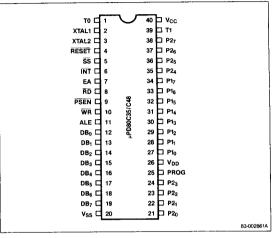


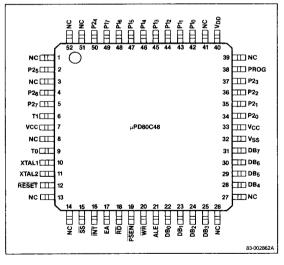
μPD80C35/C48, μPD48 8-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS

Description

The μ PD80C35, μ PD80C48, and μ PD48 are true standalone 8-bit microcomputers fabricated using CMOS technology. All of the functional blocks necessary for an integrated microcomputer are incorporated, including a 1K-byte ROM (μ PD80C48 only), a 64-byte RAM, 27 I/O lines, an 8-bit timer/event counter, and a clock generator. This integrated capability permits use in stand-alone applications. For designs requiring extra capability, the μ PD80C35/ μ PD80C48 can be expanded using peripherals and is memory compatible with industry-standard 8080A/8085A processors.

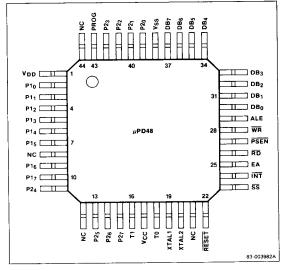

Providing compatibility with industry-standard 8048, 8748, and 8035 processors, the μ PD80C35/ μ PD80C48 features significant savings in power consumption. In addition to the power savings gained through CMOS technology, the μ PD80C35/ μ PD80C48 offers two standby modes (Halt and Stop modes) to further minimize power drain.

Features


- □ 8-Bit CPU with memory and I/O on a single-chip
- Hardware/software-compatible with industrystandard 8048, 8748, and 8035 processors
- □ 1K x 8 ROM (µPD80C48 only)
- 🗆 64 x 8 RAM
- □ 27 I/O lines
- \Box 2.5- μ s cycle time (6-MHz crystal)
- □ All instructions executable in 1 or 2 cycles
- □ 97 instructions: 70 percent are single-byte instructions
- Internal timer/event counter
- □ Two interrupts (external and timer)
- □ Easily expandable memory and I/O
- □ Bus compatible with 8080A/8085A peripherals
- □ Power-efficient CMOS technology requiring a single +2.5 to +6.0 V power supply
- Halt mode
- Stop mode

Pin Configurations

40-Pin Plastic DIP


52-Pin Plastic Miniflat

4

Pin Configurations (cont)

44-Pin Plastic Miniflat

Ordering Information

Part Number	Package Type	Max Frequency of Operation	ROM
µPD80C35C	40-pin plastic DIP	6 MHz	None
µPD80C48C	40-pin plastic DIP	6 MHz	1K x 8
µPD80C48G-00	52-pin plastic miniflat	6 MHz	1K x 8
μPD48G-22	44-pin plastic miniflat	6 MHz	1K x 8

Note:

 μ PD80C48C, μ PD80C48G-00, and μ PD48G-22 have two optional port types: type 0, I_{OH} = -5μ A; type 1, I_{OH} = -50μ A. Type 0 or 1 can be selected independently for P1₀-P1₇, P2₀-P2₃, and P2₄-P2₇.

Pin Identification

Symbol	Function
то	Test 0 input/clock output
XTAL1	Crystal 1 input
XTAL2	Crystal 2 input
RESET	Reset input
SS	Software stop input
INT	Interrupt input
EA	External access input
RD	Read output
PSEN	Program store enable output
WR	Write output
ALE	Address latch enable output
DB ₀ -DB ₇	Bidirectional data bus
V _{SS}	Ground
P20-P27	Quasi-bidirectional port 2
PROG	Program output
V _{DD}	Oscillator control voltage
P10-P17	Quasi-bidirectional port 1
T1	Test 1 input
V _{CC}	Primary power supply
NC	No connection

Pin Functions

XTAL1, XTAL2 [Crystals 1, 2]

XTAL1 and XTAL2 are the crystal inputs for the internal clock oscillator. XTAL1 is also used as an input for external clock signals.

T0 [Test 0]

The JT0 and JNT0 instructions test the level of T0 and, if it is high, the program address jumps to the specified address. T0 becomes a clock output when the ENT0 CLK instruction is executed.

T1 [Test 1]

The JT1 and JNT1 instructions test the level of T1 and, if it is high, the program address jumps to the specified address. T1 becomes an internal counter input when the STRT CNT instruction is executed.

RESET [Reset]

RESET initializes the processor and is also used to verify the internal ROM. RESET determines the oscillation <u>stabilizing</u> time during the release of STOP mode. The RESET pulse width requires at least 5 machine cycles when the supply voltage is within specifications and the oscillation frequency is stable.

SS [Single Step]

 \overline{SS} causes the processor to execute the program one step at a time.

INT [Interrupt]

INT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur.

EA [External Access]

EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging.

RD [Read]

RD enables a data read from external memory.

WR [Write]

WR enables a data write to external memory.

PSEN [Program Store Enable]

PSEN fetches instructions only from external program memory.

ALE [Address Latch Enable]

ALE occurs at each cycle. The falling edge of ALE addresses external data memory or external program memory. ALE can also be used as a clock output.

DB₀-DB₇ [Data Bus]

 DB_0 - DB_7 is a bidirectional port, which reads and writes data using RD and WR for latching. During an external program memory fetch, DB_0 - DB_7 output the low-order eight bits of the memory address. PSEN fetches the instruction. DB_0 - DB_7 also output the address of an external data memory fetch. The addressed data is read and written by RD and WR.

P10-P17 [Port 1]

P10-P17 is an 8-bit quasi-bidirectional port.

P20-P27 [Port 2]

P2₀-P2₇ is an 8-bit quasi-bidirectional port. P2₀-P2₃ output the high-order four bits of the address during an external program memory fetch. P2₀-P2₃ also function as a 4-bit I/O bus for the μ PD82C43 I/O port expander.

PROG [Program Pulse]

PROG is used as an output pulse during a fetch when interfacing with the μ PD82C43 I/O port expander.

VDD [Oscillator Control Voltage]

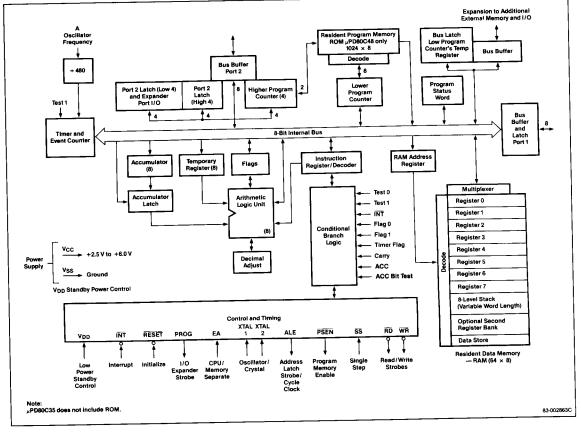
 V_{DD} stops and starts the oscillator in STOP mode. STOP mode is enabled by forcing V_{DD} low during a rest.

V_{CC} [Primary Power Supply]

 V_{CC} is the primary power supply. V_{CC} must be between +2.5 V and +6.0 V for normal operation. In STOP mode, V_{CC} must be at least +2.0 V to ensure data retention.

VSS [Ground]

V_{SS} is ground potential.


NC [No Connection]

NC is no connection.

μ**PD80C35/C48,**μ**PD48**

Block Diagram

Absolute Maximum Ratings

 $\label{eq:rescaled_$

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Standard Voltage Range

 $T_A = -40$ °C to +85 °C, $V_{CC} = +5 V \pm 10\%$, $V_{SS} = 0 V$

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
nput voltage ow	VIL	-0.3		+0.8	V	
Input voltage	VIH	V _{CC} -2		V _{CC}	v	Except XTAL1, XTAL2, RESET
Ū	V _{IH1}	V _{CC} -1		V _{CC}	V	RESET, XTAL1, XTAL2
Output voltage low	V _{OL}			+0.45	V	1 _{0L} =2.0 mA
Output voltage high	V _{OH}	2.4			V	<u>Bus, RD</u> , WR, PSEN, ALE, PROG, T0; I _{0H} = - 100 μA
	V _{0H1} (1) 2.4			v	$I_{OH} = -5 \mu A$ (type 0) port 1, port 2
		2.4			v	$I_{OH} = -50 \mu A$ (type 1) port 1, port 2
	V _{OH2}	V _{CC} -0	.5		۷	All outputs, $1_{OH} = -0.2 \mu\text{A}$
Input current	I _{ILP} (1)		- 15	40	μA	Port 1, port 2; V _{IN} ≤V _{IL} (type 0)
				- 500	μA	Port 1, port 2; V _{IN} ≪V _{IL} (type 1)
	IILC			- 40	μA	SS, RESET; V _{IN} ≪V _{IL}
Input leakage current	LII			±1	μA	T1, ĪNT, V _{CC} ; V _{SS} ≪V _{IN} ≪V _{CC}
	1 _{LI2}			±3	μA	EA; V _{SS} ≤V _{IN} ≤ V _{CC}
Output leakage current	ILO			±1	μA	V _{SS} ≪V _O ≪V _{CC} High impedance, bus, T0
Standby curren	t I _{CC1}		0.4	0.8	mA	Halt mode t _{CY} = 2.5 µs
	ICC2		1	20	μA	Stop mode (Note 2)
Supply current	Icc		4	8	mA	$t_{CY} = 2.5 \mu s$
Data retention voltage	V _{CCDP}	2.0			v	Stop mode (V _{DD} , RESET≤0.4 V)

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
nput voltage ow	VIL	-0.3		+0.18V(_C V	
Input voltage high	VIH	0.7V _{CC}		V _{CC}	v	Except XTAL1, XTAL2
	V _{IH1}	0.8V _{CC}		V _{CC}	۷	XTAL1, XTAL2
Output voltage low	VOL			+0.45	۷	I _{OL} =1.0 mA
Output voltage high	Voh	0.75V _{CC}			V	Bus, RD, WR, PSEN, ALE, PROG T0; I _{0H} = − 100 μA
	V _{0H1}	0.7V _{CC}	_		V	All other outputs; $I_{OH} = -1 \mu A$ (type 0) port 1, port 2
		0.7V _{CC}			V	All other outputs; $I_{OH} = -10 \ \mu A$ (typ 1) port 1, port 2
Input current	I _{ILP}		- 15	-40	μÂ	Port 1, port 2; V _{IN} ≪V _{IL} (type 0)
				- 500	μA	Port 1, port 2; V _{IN} ≤V _{IL} (type 1)
Input leakage current	կլ			- 40	μA	SS, RESET; V _{IN} ≪ V _{IL}
	¹ LI1			±1	μÂ	T1, ÎNT, V _{SS} <v<sub>IN<v<sub>CC</v<sub></v<sub>
	I _{LI2}			±5	μA	EA; V _{SS} <v<sub>IN<v<sub>CC</v<sub></v<sub>
Output leakage current	ILO			±1	μΑ	V _{SS} <v<sub>0<v<sub>CC, Bus, T0—high impedance state</v<sub></v<sub>
Supply current	ICC		0.8	1.6	mA	$V_{CC} = 3 V$, $t_{CY} = 10 \mu s$
			6	12	μA	$V_{CC} = 6 V,$ $t_{CY} = 25 \mu s$
Standby current	l loct		100	200	μA	Halt mode; $V_{CC} = 3 V$, $t_{CY} = 10 \mu s$
			0.6	1.2	mA	$V_{CC} = 6 V,$ $t_{CY} = 2.5 \mu s$
	I _{CC2}		1	20	μA	Stop mode, V _{CC} = 3 V
			1	50	μA	$V_{CC} = 6 V$

Note:

(1) Types 0, 1 for µPD80C48 only.

Type 0 for µPD80C35 only.

(2) Input pin voltage is $V_{IN} \leq V_{IL}$, or $V_{IN} \geq V_{IH}$.

AC Characteristics

Read, Write and Instruction Fetch: External Data and **Program Memory**

 $T_A = -40^{\circ}$ C to +85°C, $V_{CC} = V_{DD} = +5V \pm 10\%$; $V_{SS} = 0V$

			Lim	its			
	-	V _{CC} +5V ±		V _{CC} 2.5 V to			Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
ALE pulse width	tLL	400		2160		ns	
Address setup before ALE	t _{AL}	120		1620		ns	
Address hold from ALE	t _{LA}	80		330		ns	(Note 1)
Control pulse width (RD, WR, PSEN)	tcc	700		3700		ns	
Data setup before WR	t _{DW}	500		3500		ns	
Data hold after WR	t _{WD}	120		370		ns	(Note 2)
Cycle time	tcy	2.5	150	10	150	μs	6 MHz XTAL
Data hold	tDR	0	200	0	950	ns	
PSEN, RD to data in	t _{RD}		500		2750	ns	
Address setup before WR	t _{AW}	230		3230		ns	(Note 1)
Address setup before data in	t _{AD}		950		5450		
Address float to RD, PSEN	t _{AFC}	0		500	_	ns	i
Control pulse to ALE	o t _{CA}	10		10		ns	;

Bus Timing Requirements (Note 1)

Symbol	Timing Formula	Min/Max	Unit
	(7 / 30) t _{CY} -170	Min	ns
AL	(1/5) t _{CY} -380	Min	ns
LA	(1/30) t _{CY}	Min	ns
t _{cc}	(2/5) t _{CY} -300	Min	ns
tow	(2/5) t _{CY} - 500	Min	ns
twp	(1/30) t _{CY} +40	Min	ns
t _{DR}	(1 / 10) t _{CY} - 50	Max	ns
t _{RD}	(3 / 10) t _{CY} - 250	Мах	ns
taw	(2/5) t _{CY} -770	Min	ns
t _{AD}	(3/5) t _{CY} - 550	Max	ns
tAFC	(1 / 15) t _{CY} - 165	Min	ns

Port 2 Timing

 $T_A = -40$ °C to +85 °C, $V_{CC} = V_{DD} = +5 V \pm 10\%$; $V_{SS} = 0 V$

			Lin	its			
	-	Vcc +5 V 1		V _{CC} 2.5 V to			Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Port control setup before falling edge of PROG	t _{CP}	110		860		ns	
Port control hold after falling edge of PROG	t _{PC}	0	80	0	200	ns	(Note 4)
PROG to time P2 input must be valid	t _{PR}		810		5310	ns	
Output data setup time	t _{DP}	250		3250		ns	(Note 3)
Output data hold time	i t _{PD}	65		820		ns	
Input data hold time	tpF	0	150	0	900	ns	
PROG pulse width	tpp	1200		6450		ns	
Port 2 / 0 data setup time	tpL	350		2100		ns	
Port 21/0 data hold time	tLP	150		1400		ns	i

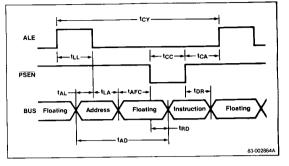
Note:

(1) Control outputs: $C_L = 80 \text{ pF}$, bus outputs: $C_L = 150 \text{ pF}$

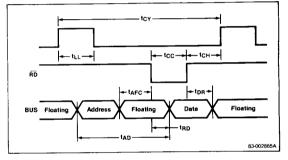
(2) $C_L = 20 \, pF$

(3) Control outputs: $C_L = 80 \, pF$

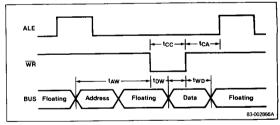
(4) Refer to the operating characteristics curves for supply voltage and port control hold.

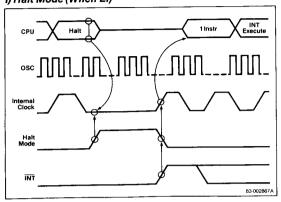

Symbol	Timing Formula	Min/Max	Unit
t _{CP}	(1/10) t _{CY} -140	Min	ns
t _{PC2}	(4 / 15) t _{CY} - 200	Min	ns
tpR	(3/5) t _{CY} -690	Max	ns
t _{PF}	(1/10) t _{CY} - 100	Max	ns
t _{DP}	(2/5) t _{CY} - 750	Min	ns
t _{PD}	(1 / 10) t _{CY} - 180	Min	ns
tpp	(7 / 10) t _{CY} - 550	Min	ns
tpL	(7/30) t _{CY} - 230	Min	ns
tLP	(1/6) t _{CY} - 265	Min	ns

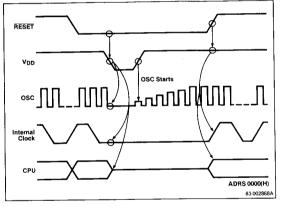
Note:

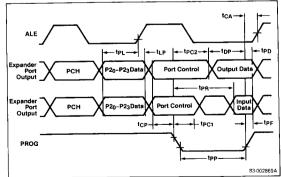

(1) Unlisted parameters are not affected by cycle time.

Timing Waveforms


Instruction Fetch From External Memory


Read From External Data Memory


Write to External Memory


Low Power Standby Operation 1) Halt Mode (When El)

2) Stop Mode

Port 2 Timing

Functional Description

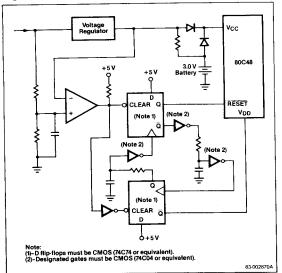
Standby Function

Halt Mode

In Halt mode, the oscillator continues to operate, but the internal clock is disabled. The status of all internal logic just prior to execution of the HALT instruction is maintained by the CPU. In Halt mode, power consumption is less than 10 percent of normal μ PD80C48 operation and less than 1 percent of normal 8048 operation.

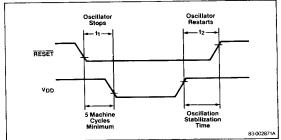
The Halt mode is initiated by execution of the HALT instruction, and is released by either INT or RESET input.

INT Input. When the $\overline{\text{INT}}$ pin receives a low-level input, if interrupts are enabled, the internal clock is restarted and the interrupt is executed after the first or second instruction following the HALT instruction. However, if interrupts are disabled, program operation is resumed from the next address following the HALT instruction. The first instruction following a HALT instruction should be a NOP instruction to ensure proper program execution.


If the Halt mode is released when interrupts are enabled, the interrupt service routine is usually executed after the first or second instruction following the release of Halt mode. However, if either a timer or external interrupt is accepted within one machine cycle prior to a HALT instruction, the corresponding timer or external interrupt service routine is executed immediately following the release of Halt mode. It is important to note this sequence of execution when considering interrupt service routine execution following a HALT instruction.

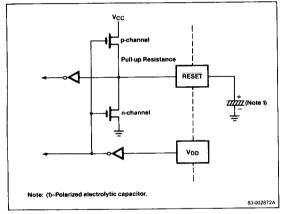
RESET Input. When a low-level input is received by the RESET pin, Halt mode is released and the normal reset operation is activated, restarting program operation from address 0.

Stop Mode


In Stop mode, the oscillator is deactivated and only the contents of RAM are maintained. The operation status of the μ PD80C35/ μ PD80C48 resembles that of a reset condition. Because only the contents of RAM are maintained, Stop mode provides even lower power consumption than Halt mode, only requiring a minimum V_{CC} as low as +2V.

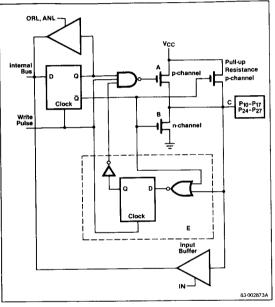
Stop mode is initiated by setting V_{DD} to low when RE-SET is low, to protect the contents of RAM. Stop mode is released by first raising the supply voltage at the V_{CC} pin from standby level to correct operating level and setting V_{DD} to high when RESET is low. After the oscillator has been restarted and the oscillation has stabilized, RESET must be set to high, whereby program operation is started from address 0. Figure 1 shows the Stop mode circuit. Figure 1. Stop Mode Circuit

Stop Mode Circuit. Since V_{DD} controls the restarting of the oscillator, it is important that V_{DD} be protected from noise interference. The time required to reset the CPU is represented by t_1 (see figure 2), which is a minimum of 5 machine cycles. The reset operation will not be completed in less than 5 machine cycles. In Stop mode, it is important to note that if V_{DD} goes low before 5 machine cycles have elapsed, the CPU will be deactivated and the output of ALE, \overline{RD} , \overline{WR} , \overline{PSEN} , and PROG will not have been stabilized.



Oscillation stabilization time is represented by t₂ (see figure 2). When V_{DD} goes high, oscillator operation is reactivated, but it takes time before oscillation can be stabilized. In particular, such high Q resonators as crystals require longer periods to stabilize. Because there is a delay between restarting of the oscillator and oscillator stabilization, t₂ should be long enough to ensure that the oscillator has been fully stabilized.

To facilitate Stop mode control, an external capacitor can be connected to the RESET pin (see figure 3), affecting only t_2 , allowing control of the oscillator stabilization time. When V_{DD} is asserted in Stop mode, the capacitor begins charging, pulling up RESET. When RE-SET reaches a threshold level equivalent to a logic 1, Stop mode is released. The time it takes RESET to reach the threshold level of logic 1 determines the oscillator stabilization time, which is a function of the capacitance and pull-up resistance values.



Port Operation

NEC

A port-loading option is offered at the time of ordering the mask. Individual source current requirements for Port 1 and the upper and lower halves of Port 2 may be factory set at either -5μ A or -50μ A (see Port-Loading Options table). The -50μ A option is required for interfacing with TTL/NMOS devices. The -5μ A option is recommended for interfacing to other CMOS devices. The CMOS option results in lower power consumption and greater noise immunity. Port lines P1₀-P1₇ and P2₄-P2₇ include a protective circuit "E" to prevent a signal conflict at the port. The circuit prevents a logic 1 from being written to a line that is being pulled down externally (see figure 4, Port Protection Circuit E diagram). When a logic 0 is detected at the port line and a logic 1 is written from the bus, the NOR gate sends a logic 1 to the D input of the flip-flop. The output is inverted, forcing the NAND gate to send a high-level output. This turns off transistor A, preventing the output of a logic 1 from the port.

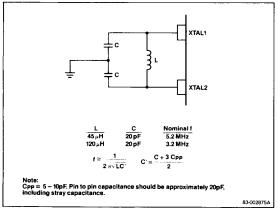
Port-Loading Options

 I_{OH} (min) $V_{CC} = V_{DD} = 5 V \pm 10\%$; $V_{OH} = 2.4 V$ (min)

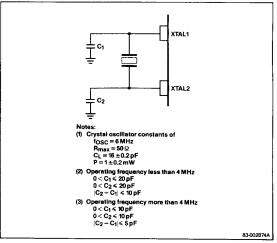
Option Selected	P10-P17	₽2 ₀ -₽2 ₃	P24-P27	Unit
A	-5	-5	- 5	μA
В	- 50	- 5	-5	μA
C	- 5	-50	-5	μA
D	- 50	- 50	-5	μA
E	- 5	-5	- 50	μA
F	- 50	- 5	- 50	μA
G	- 5	- 50	- 50	μA
н	- 50	- 50	- 50	μA

Note:

(1) The selection of $I_{OH} = -5\mu A$ will result in a port source current of $I_{ILP} = -40\mu A$ max when used as input port.


(2) The selection of $I_{OH} = -50 \mu A$ will result in a port source current of $I_{ILP} = -500 \mu A$ max when used as input port.

Oscillator Operation


The oscillator maintains an internal frequency for clock generation and controls all system timing cycles. The oscillation is initiated by either a self-generating external resonator or external clock input. The oscillator acts as a high-gain amplifier which produces square-wave pulses at the frequency determined by the resonator or clock source to which it is connected.

To obtain the oscillation frequency, an external LC network (figure 5) may be connected to the oscillator, or, a ceramic or crystal external resonator (figure 6) may be connected.



As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the crystal is lowered, R is increased. Due to this relationship, it becomes difficult to stabilize oscillation when there is low power supply voltage. When V_{CC} is less than 2.7 V and the oscillator frequency is 3 MHz or less, T_A (ambient temperature) should not be less than -10° C.

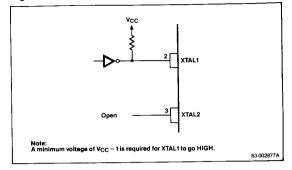

Figures 7 and 8 show the ceramic resonator and external clock frequency reference circuits. Figure 9 shows the μ PD80C35/ μ PD80C48 major I/O signals.

Figure 7. Ceramic Resonator Frequency Reference Circuit

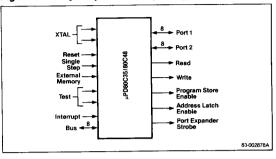


Figure 8. External Clock Frequency Reference Circuit

Figure 9. Major Input and Output Signals

Instruction Set

Instruction Set Symbol Definitions

Symbol	Description	Symbol
A	Accumulator	SP
AC	Auxiliary carry flag	T
addr	Program or data memory address (a0-a7) or	TF
	$(a_0 - a_{10})$	T0, T1
b	Accumulator bit (b = 0-7)	#
BS	Bank switch	@
BUS	Bus	x
C	Carry flag	
CLK	Clock	
CNT	Counter	(x)
data	8-bit binary data (d ₀ -d ₇)	((x))
DBF	Memory bank flip-flop	
F0, F1	Flag 0, flag 1	AND
INT	Interrupt pin	OR
	Indicates the hex number of the specified register	EXOR
	or port	
PC	Program counter	
Pp	Port 1, port 2, or ports 4-7 (p=1, 2 or 4-7)	
PSW	Program status word	
Br	Register $(r = 0-7)$	

Symbol	Description
SP	Stack pointer
T	Timer
TF	Timer flag
T0, T1	Test 0, test 1 pin
#	Prefix for immediate data
@	Prefix for indirect address
x	Indicates the hex number corresponding to the accumulator bit or page number specified in the operand
(x)	Contents of RAM
((x))	Contents of memory location addressed by (x)
-	Transfer direction, result
AND	Logical product (logical AND)
OR	Logical sum (logical OR)
EXOR	Exclusive-OR
	Complement

Mnemonic Accumulator			Hax		ſ	ō	Operation Code	n Code	-				
Accumulator	Function	Description	Code	5	å	õ	4	ő	D2	ŏ	Do	Cycles	Bytes
ADD A, # data	(A) ← (A) + data	Adds immediate data d_0 – d_7 to the accumulator. Sets or clears both carry flags. (Note 2)	8	с С	0 ⁹	ი მ	6 O	မ ဗိ	0 ⁶ 0	÷- ₽	4 م	2	2
ADD A, Rr	$(A) \leftarrow (A) + (Rr)$ r = 0-7	Adds the contents of register Rr to the accumulator. Sets or clears both carry flags. (Note 2)	6n(4)	0	-	-	0	-	<i>۱</i>	-	<i>ـ</i>	-	-
ADD A, @ Rr	$(A) \leftarrow (A) + ((Rr))$ r = 0-1	Adds the contents of the internal data memory location specified by bits 0–5 of register Rr to the accumulator. Sets or clears both carry flags. (Note 2)	6n(4)	0	-	-	0	0	0	0	L	-	
ADDC A, # data	(A) (A) + (C) + data	Adds, with carry, immediate data d ₀ -d ₇ to the accumulator. Sets or clears both carry flags. (Note 2)	5	9 Q	ဝမ္	ဝမ်	- 4	0 წ	° ² 0	- 2	- 8	5	2
ADDC A, Rr	(A) \leftarrow (A) + (C) + (Rr) r = 0-7	Adds, with carry, the contents of register Rr to the accumulator. Sets or clears both carry flags. (Note 2)	7n(4)	0	-	-	-	-	-	ب	-	-	-
ADDC A, @ Rr	$(A) \leftarrow (A) + (C) + ((Rr))$ r = 0-1	Adds, with carry, the contents of the internal data memory location specified by bits 0–5 of register Rr, to the accumulator. Sets or clears both carry flags. (Note 2)	7n(4)	0	-	-	-	0	0	0	-	-	-
ANL A, # data	(A) ← (A) AND data	Takes the logical product (logical AND) of immediate data dg-d7 and the contents of the accumulator, and stores the result in the accumulator.	53	d7 0	4 4	d5 O	- 2	ဝမ်း	40 O	- 5	- 응	5	2
ANL A, Rr	(A) \leftarrow (A) AND (Rr) r = $0-7$	Takes the logical product (logical AND) of the contents of register Rr and the accumulator, and stores the result in the accumulator.	5n(4)	0	-	0	-	-	ـ	-	-	F	÷
ANL A, @ Rr	(A) ← (A) AND ((Rr)) r = 0-1	Takes the logical product (logical AND) of the contents of the internal data memory location specified by bits 0–5 of register Rr, and the accumulator, and stores the result in the accumulator.	5n(4)	0	-	0	-	0	0	0	L	-	-
CPL A	(A) +- (Ā)	Takes the complement of the contents of the accumulator.	37	0	0	-	-	0	-	-	-	-	-
CLRA	(A) 0	Clears the contents of the accumulator.	27	0	0	-	0	0	-	-	-	-	-
DA A		Converts the contents of the accumulator to BCD. Sets or clears the carry flags. When the lower 4 bits (A_0-A_3) are greater than 9, or if the auxiliary carry flag has been set, adds 6 to (A_0-A_3). When the upper 4 bits (A_4-A_7) are greater than 9 or if the carry flag (C) has been set, adds 6 to (A_4-A_7). If an overflow occurs at this point, C is set. (Note 2)	57	0	-	0	-	0	-	-	-	-	-
DEC A	(A) (A) 1	Decrements the contents of the accumulator by 1.	20	0	0	0	0	0	-	-	-	-	-
INC A	(A) (A) + 1	Increments the contents of the accumulator by 1.	17	0	0	0		0		-	-	-	-
ORL A, # data	(A) ← (A) OR data	Takes the logical sum (logical OR) of immediate data d ₀ -d ₇ and the contents of the accumulator, and stores the result in the accumulator.	43	0 d7	- ф	д 0	d4 0	05	d 0	- 2	- 9	5	5
orl a, ri	(A) + (A) OR (Rr) r = 0-7	Takes the logical sum (logical OR) of register Rr and the contents of the accumulator, and stores the result in the accumulator.	4n(4)	0	-	0	0	-	-	-	-	-	-

4-224

This Material Copyrighted By Its Respective Manufacturer

_
=
-
•
•••
-
_
-
-
•
60
-
- 5
- 0
. —
_
- 63
-
_
- L
_
- 673
- H
_
_

Instruction Set	on Set (cont)											
			Hex			ð	Operation Code	Code			,	
Mnemonic	Function	Description	Code	5	ດ້	ŝ	*	۔ ۵	D2	å	Cycles	Bytes
Accumulator (cont)	1											
ORL A, @ Rr	(A) (A) OR ((Rr)) r = 0-1	Takes the logical sum (logical OR) of the contents of the internal data memory location specified by bits 0–5 in register Rr, and the contents of the accumulator, and stores the result in the accumulator.	4n(4)	0	-	0	0	0	0	0	-	-
RL A	(AN + 1) - (AN) $(A_0) - (A_7) N = 0-6$	Rotates the contents of the accumulator one bit to the left. The MSB is rotated into the LSB.	E7	-	۰	-	0	0	-	-	-	-
RLC A	$(AN + 1) \leftarrow (AN); N = 0-6$ $(A_0) \leftarrow (C)$ $(C) \leftarrow (A_7)$	Rotates the contents of the accumulator one bit to the left through carry.	F7	.	-	-	-	0	-	-	-	-
RR A	$(AN) \leftarrow (AN + 1); N = 0-6$ $(A_7) \leftarrow (A_0)$	Rotates the contents of the accumulator one bit to the right. The LSB is rotated into the MSB.	11	0	-	-	-	0	-	-	-	-
RRC A	$(AN) \leftarrow (AN + 1); N = 0-6$ $(A_7) \leftarrow (C)$ $(C) \leftarrow (A_0)$	Rotates the contents of the accumulator one bit to the right through carry.	67	0	-	-	0	0	-			-
SWAP A	(A4-A7) + (A0-A3)	Exchanges the contents of the lower 4 bits of the accumulator with the upper 4 bits of the accumulator.	47	0	-	0	0	0	-	-	-	
XRL A, # data	(A) (A) XOR data	Takes the exclusive OR of immediate data d_0-d_7 and the contents of the accumulator, and stores the result in the accumulator.	D3	1 d ₇	- 9 d6	d5 d5	1 d4	0 d3	d2 0	1 գ_ 40	2	2
XRL A, Rr	$(A) \leftarrow (A) XOR (Rr)$ $r = 0-7$	Takes the exclusive OR of the contents of register Ar and the accumulator, and stores the result in the accumulator.	Dn(4)	-	-	0	-	-	<i>ـ</i>	-	-	-
XRL A, @ Rr	(A) $-$ (A) XOR ((Rr)) r = 0-1	Takes the exclusive OR of the contents of the location in data memory specified by bits 0–5 in register Rr, and the accumulator, and stores the result in the accumulator.	Dn(4)	-	-	0	-	0	0	0		-
Branch												
DJNZ Rr, addr	$\begin{array}{l} (Rr) \leftarrow (Rr) - 1; \ r = 0 - 7 \\ \text{If } (Rr) \neq 0; \\ (PC_0 - PC_7) \leftarrow \text{addr} \end{array}$	Decrements the contents of register Rr by 1, and if the result is not equal to 0, jumps to the address indicated by a_0-a_7 .	ធ	1 a7	a ₆	a5 1	0 a4	a ₃	r a2	г г а1 а0		2
JBb addr	$(PC_0 - PC_7) - addr if b = 1$ (PC) = (PC) + 2 if b = 0	Jumps to the address specified by a_0 - a_7 if the bit in the accumulator specified by b_0 - b_2 is set.	x2(6)	b ₂ a ₇	⁴ 8	b0 a5	94 -	0 ³ 3	0 ^a 2	1 0 a1 a0	5	5

μ**PD80C35/C48, μPD48**

			Ver			ð	eratio	Operation Code					
Mnemonic	Function	Description	Code	5	å	ŝ	4	ő	D2	ā	5 6	Cycles	Bytes
Branch (cont)													
JC addr	$(PC_0 - PC_7) \leftarrow addr if C = 1$ (PC) $\leftarrow (PC) + 2 if C = 0$	Jumps to the address specified by a_0-a_7 if the carry flag is set.	F6	1 a7	1 a ₆	a5	- 1 94	93 0	1 a ₂	- 19 - 19	9 Q	2	5
JF0 addr	$(PC_0 - PC_7) \leftarrow addr if F0 = 1$ (PC) $\leftarrow (PC) + 2 if F0 = 0$	Jumps to the address specified by a_0-a_7 if F0 is set.	B6	1 a ₇	0 9 ⁶	a5	a4 1	0 33	1 a ₂	a ₁ a	0 30	2	5
JF1 addr	$(PC_0-PC_7) \leftarrow addr if F1 = 1$ (PC) $\leftarrow (PC) + 2 if F1 = 0$	Jumps to the address specified by a_0-a_7 if F1 is set.	76	0 a7	4 98	a5 1	1 a4	0 a3	1 a ₂	a 1 81	0 80	2	2
JMP addr	$(PC_{10} - PC_{10}) \leftarrow (addr_8 - addr_{10})$ $(PC_{0} - PC_{7}) \leftarrow (addr_{0} - addr_{7})$ $(PC_{11}) \leftarrow DBF$	Jumps directly to the address specified by $a_0^{-a_{10}}$ and the DBF.	x4(6)	a10 a7	ag a6	a5 a5	a4 0	0 a ₃	a ₂ 1		0 <mark>9</mark> 0 0	5	5
JMPP @ A	(PC ₀ -PC ₇)	Replaces the lower 8 bits of the program counter with the contents of program memory specified by the contents of the accumulator, producing a jump to the specified address within the current page.	83	-	0	-	-	0	0	-	-	5	-
JNC addr	$(PC_0-PC_7) \leftarrow addr if C = 0$ (PC) \leftarrow (PC) + 2 if C = 1	Jumps to the address specified by a_0-a_7 if the carry flag is not set.	E6	1 a7	a ₆ 1	- 3 ⁹	94 O	0 ³ 3	1 a2		a0 90	2	2
JNI addr	$(PC_0 - PC_7) - addr if = 0$ (PC) - (PC) + 2 if = 1	Jumps to the address specified by $a_0\text{-}a_7$ if the interrupt flag is not set.	86	1 a7	0 a ₆	၀ မို	a4 0	0 ³ 3	a ₂		0 80	2	5
JNT0 addr	$(PC_0 - PC_7) \leftarrow addr if T0 = 0$ (PC) $\leftarrow (PC) + 2 if T0 = 1$	Jumps to the address specified by a_0-a_7 if test 0 is low.	26	0 a7	0 %	a5 -	a4 0	0 a3	1 a ₂	a1 31	a0 10	2	2
JNT1 addr	$(PC_0-PC_7) - addr if T1 = 0$ (PC) - (PC) + 2 if T1 = 1	Jumps to the address specified by $a_0 - a_7$ if test 1 is low.	46	0 a7	a ₆	a5 0	9 ⁴ 0	0 a3	a ₂	a -	a0 80	2	5
JNZ addr	$(PC_0 - PC_7) \leftarrow addr \text{ if } A \neq 0$ (PC) \leftarrow (PC) + 2 if A = 0	Jumps to the address specified by a_0-a_7 if the contents of the accumulator are not equal to 0.	96	1 a7	0 a ₆	a5 0	a4 1	a3 0	1 a2	م - ۴	a0	5	7
JTF addr	$(PC_0-PC_7) \leftarrow addr if TF = 1$ $(PC) \leftarrow (PC) + 2 if TF = 0$	Jumps to the address specified by a_0-a_7 if the timer flag is set. The timer flag is cleared after the instruction is executed.	16	0 a7	0 a ₆	a5 0	a4 -	a3 0	1 a2	a1 -	a0 80	5	5
JT0 addr	$(PC_0-PC_7) \leftarrow addr if T0 = 1$ (PC) $\leftarrow (PC) + 2 if T0 = 0$	Jumps to the address specified by a_0-a_7 if test 0 is high.	36	0 a7	0 a ₆	a 5 -	1 84	a ₃ 0	a2	न स्	0 8	5	5
JT1 addr	$(PC_0 - PC_7) \leftarrow addr if T1 = 1$ (PC) $\leftarrow (PC) + 2 if T1 = 0$	Jumps to the address specified by a_0 - a_7 if test 1 is high.	56	a7	- a6	၀ ဗိ	a4 1	33 O	- ⁴	a, 1	90 90	5	5
Zſ	$(PC_0 - PC_7) \leftarrow addr if A = 0$ (PC) $\leftarrow (PC) + 2 if A = 1$	Jump to the address specified by a_0-a_7 if the contents of the accumulator are equal to 0.	90 Ce	1 a7	a ₆	0 a ₅	0 a4	a3 93	1 a2	4 F	9 O	2	2

Instructio	Instruction Set (cont)					ľ		.				
			Hex				<u>a</u>			1		
Mnemonic	Function	Description	e Code C	5	å	- -	2 2	5	٥	8	Cycles	bytes
Control	Î											
ENI		Enables external interrupts. When external interrupts are enabled, a low-level input to the INT pin causes the processor to vector to the interrupt service routine.	02	0	0	0	0	-	0	-	-	-
I SIQ		Disables external interrupts. When external interrupts are disabled, low-level inputs to the INT pin have no effect on program execution.	15	0	0	0	1 0	-	0	-	-	-
ENTO CLK		Enables clock output to pin T0.	75	0	-	-	-	1	0	-	-	-
SEL MB0	(DBF) +- 0	Clears the memory bank flip-flop, selecting program memory bank 0 (program memory addresses 0-2047(10)). Clears PC ₁₁ after the next JMP or CALL instruction.	ES	-	-	-	0	-	0	-	-	-
SEL MB1	(D8F) ← 1	Sets the memory bank flip-flop, selecting program memory bank 1 (program memory addresses 2048–4095 ₍₁₀₎). Sets PC ₁₁ after the next JMP or CALL instruction.	F5	-	-	-	-	0	0	-	-	-
SEL RBO	(BS) 0	Selects data memory bank 0 by clearing bit 4 (bank switch) of the PSW. Specifies data memory addresses $0^{-7}(10)$ as registers 0^{-7} of data memory bank 0.	C5	-		0	0	- 1	0	-	-	-
SEL RB1	(BS) ← 1	Selects data memory bank 1 by setting bit 4 (bank switch) of the PSW. Specifies data memory 24–31($_{\rm 10}$) as registers 0–7 of data memory bank 1.	02	-	-	0	-	0	0	-	-	-
HALT		Initiates halt mode.	6	0	0	0	0	0	0	-	-	-
Data Moves												
MOV A, # data	(A) 🔶 data	Moves immediate data d_0 - d_7 into the accumulator.	23	0 d7	0 d ₆	d ₅	0 4 0	0 0 d ₃ d ₂		- ₽	2	2
MOV A, Rr	(A) \leftarrow (Rr); r = 0-7	Moves the contents of register Rr into the accumulator.	Fn(4)	-	-	-	-	-	-	-	-	-
MOV A, @ Rr	(A) ← ((Rr)); r = 0-1	Moves the contents of internal data memory specified by bits 0–5 in register Rr, into the accumulator.	Fn(4)	-	-	-		0 0	•	-	-	-
MOV A, PSW	(A) (PSW)	Moves the contents of the program status word into the accumulator.	C7	-	-	0	0	0	-	-	-	-
MOV Rr, # data	(Rr) ← data; r = 0-7	Moves immediate data do-d7 into register Rr.	Bn(4)	4 1	0 90	ط5 م	- 4 4 -	1 r d ₃ d ₂	- 5	- 8	2	2
MOV Rr, A	(Rr) - (A); r = 0-7	Moves the contents of the accumulator into register Rr.	An(4)	-	0	-	0	-	-	-	-	-
MOV @ Rr, A	((Rr)) (A); r = 0-1	Moves the contents of the accumulator into the data memory location specified by bits 0-5 in register Rr.	An(4)	-	0	-	0	0 0	0	-	-	-
MOV @ Rr, # data	ta ((Rr)) data; r = 0-1	Moves immediate data d_0 - d_7 into the data memory location specified by bits 0-5 in register Rr.	Bn(4)	1 d7	0 9 ⁹	d5 d5	d4 -	0 d ₃ d ₂	0-5	- 8	5	5

4-227

4

NEC

Instructio	Instruction Set (cont)					•						
			Hex			ð	Operation Code	code			,	
Mnemonic	Function	Description	Code	6	å	õ	3	03 02	<u>م</u>	å	Cycles	Bytes
Data Moves (cont)												
MOV PSW, A	(PSW) +- (A)	Moves the contents of the accumulator into the program status word.	D7	-	-	0	-	-	-	-	-	-
MOVP A, @ A		Moves the contents of the program memory location specified by $PC_{B}-PC_{T1}$ concatenated with the contents of the accumulator, into the accumulator.	A3		0	-	0	0	-	-	5	-
MOVP3 A, @ A	$(PC_0-PC_7) \leftarrow (A)$ $(PC_8-PC_{11}) \leftarrow 001$ $(A) \leftarrow ((PC))$	Moves the contents of the program memory location specified by 0011 (PC8–PC ₁₁ , page 3 of program memory bank 0) and the contents of the accumulator, into the accumulator.	E3	-	-	-	0	0	-	-	~	-
MOVX A, @ R	(A) ((Rr)); r = 0-1	Moves the contents of the external data memory location specified by register Rr, into the accumulator.	8n(4)	-	0	0	0	0 0		- 0	2	-
MOVX @ R. A	((Rr)) (A); r = 0-1	Moves the contents of the accumulator into the external data memory location specified by register Rr.	9n(4)	-	0	0	-	0		0	5	-
XCH A, Rr	(A) (Rr); r = 0-7	Exchanges the contents of the accumulator and register Rr.	2n(4)	0	0	٢	0	-	_	-	-	-
XCH A, @ Rr	(A) ((Rr)); r = 0-1	Exchanges the contents of the accumulator and the contents of the data memory location specified by bits 0–5 in register Rr.	2n(4)	0	0	-	0	0		-		-
XCHD A, @ Rr	$(A_0 - A_3) \leftrightarrow ((Rr))_0 - ((Rr))_3;$ r = 0-1	Exchanges the contents of the lower 4 bits of the accumulator with the contents of the lower 4 bits of the internal data memory location specified by bits 0–5 in register Rr.	3n(4)	0	0	÷-	-	0		-	-	-
Flags												
CPL C	(C) (Ū)	Takes the complement of the carry bit.	A7	-	0	-	。	0		_	-	-
CPL F0	(F0) +- (F0)	Takes the complement of flag 0.	96		0	0	-	0	_	0	-	-
CPL F1	(F1) +- (F1)	Takes the complement of flag 1.	B5		0	-	-	0	-	0	-	-
CLR C	(C) + 0	Clears the carry bit.	67	-	0	-	-		_	-	-	-
CLR F0	(F0) +- 0	Clears flag 0.	85	-	0	0	0	0		0	-	-
CLR F1	(F1) 0	Clears flag 1.	A5	-	0	-	0	0	-	0 1	-	-

μ PD80C35/C48, μ PD48

_
-
•
U
4
•••
-
-
_
•
•
ŝ
•••
_
Ξ.
-
•
_
25
•••
- 3
-
-
-
- 673
-

						ľ	Onemetion Code	400					
	:		Hex	Z	Ł	5			6	d	6	Cycles	Bytes
Mnemonic	Function	Description		5	r	r	1						
Input / Output													
ANL BUS, # data	(bus) + (bus) AND data	Takes the logical AND of the contents of the bus and immediate data d_0-d_7 , and sends the result to the bus.	86	d 1	0 9	၀ မ်ိ	1 d4	1 d3	0 d2	о б	0 B	7	7
ANL Pp, # data	(Pp) \leftarrow (Pp) AND data; p = 1-2	Takes the logical AND of the contents of designated port Pp and immediate data $d_0^-d_7$, and sends the result to port Pp for output.	9n(5)	- 5	ဝဗီ	д о	d4 -	d3 1	0 d ₂	d b	a 9	2	2
ANLD Pp, A	(Pp) (Pp) AND (A ₀ -A ₃); p = $4-7$	Takes the logical AND of the contents of designated port Pp and the lower 4 bits of the accumulator, and sends the result to port Pp for output.	9n(5)	-	0	0	-	-	-	م	م	5	-
IN A, Pp	(A) + (Pp); p = 1-2	Loads the accumulator with the contents of designated port Pp.	0n(5)	0	0	0	0	-	0	٩	a	2	-
INS A, BUS	(A) (bus)	Loads the contents of the bus into the accumulator on the rising edge of $\overline{\text{RD}}$.	80	0	0	0	•	-	0	0	0	5	-
MOVD A, Pp	$(A_0-A_3) \leftarrow (Pp); p = 4-7$ $(A_4-A_7) \leftarrow 0$	Moves the contents of designated port Pp to the tower 4 bits of the accumulator, and clears the upper 4 bits.	0n(5)	0	0	0	0	-	-	م	<u>م</u>	2	-
MOVD Pp, A	(Pp) ← (A ₀ ~A ₃); p = 4-7	Moves the lower 4 bits of the accumulator to designated port Pp. The upper 4 bits of the accumulator are not changed.	3n(5)	0	0	-	-	-	-	م	a	5	-
ORL BUS, # data	(bus) +- (bus) OR data	Takes the logical OR of the contents of the bus and immediate data $d_0\mathchar{-}d_7,$ and sends the result to the bus.	88	- 4	၀ မှ	9 9	d4	d3 - 1	42 O	0 F	08	2	5
ORLD Pp, A	(Pp) \leftarrow (Pp) OR (A ₀ -A ₃); p = 4-7	Takes the logical OR of the contents of designated port Pp and the lower 4 bits of the accumulator, and sends the result to port Pp for output.	8n(5)	-	0	0	0	-	-	م	a	5	-
ORL Pp, # data	(Pp) \leftarrow (Pp) OR data; p = 1-2	Takes the logical OR of the contents of designated port Pp and immediate data d_0 -d ₇ , and sends the result to port Pp for output.	9n(5)	4 -	9 ⁹ 0	d5 d5	d4 0	- ф	0 ² 0	교준	a 8	2	2
OUTL BUS, A	(bus) → (A)	Latches the contents of the accumulator onto the bus on the rising edge of WR. Note: Never use the OUTL BUS instruction when using external program memory, as this will permanently latch the bus.	02	0	0	0	0	0	0	-	0	5	-
OUTL Pp,A	(Pp) ← (A); p = 1-2	Latches the contents of the accumulator into designated port Pp for output.	r 3n(5)	0	0	-	-	-	0	۹	a	2	-
Registers													
DEC Rr	(Rr) + (Rr) - 1; r = 0-7	Decrements the contents of register Rr by 1.	Cn(4)	-	-	0	0	-	-	-	-	-	-
INC Rr	$(Rr) \leftarrow (Rr) + 1; r = 0-7$	Increments the contents of register Rr by 1.	1n(4)	0	0	0	-	-	г	-	-	-	-
INC @ Rr	$((Rr)) \leftarrow ((Rr)) + 1;$ r = 0-1	Increments by 1 the contents of the data memory location specified by bits 0–5 in register Rr.	l 1n(4)	0	0	0		•	0	•	-	-	-

μ**PD80C35/C48**, μ**PD48**

			791			80	Operation Code	Code					
Mnemonic	Function	Description	Code	5	ő	ñ	đ	۵ ۵	D2	å	Cycles		Bytes
Subroutine													-
CALL addr	$\begin{array}{l} ((SP)) \leftarrow (PC), (PSW_4 - PSW_7) \\ (SP) \leftarrow (SP) + 1 \\ (PG_9 - PC_{10}) + - (addr_9 - addr_{10}) \\ (PC_0 - PC_7) - (addr_0 - addr_7) \\ (PC_{11}) \leftarrow 0FF \\ (PC_{11}) \leftarrow 0FF \end{array}$	Stores the contents of the program counter and the upper 4 bits of the PSW in the address indicated by the stack pointer, and increments the contents of the stack pointer, calling the subroutine specified by address a ₀ -a ₁₀ and the DBF.	x4(6)	a10 a7	a6 a6	32 33 32	37 - J	33 D	a2 1	a 0 a 1	1		v
RET	$(SP) \leftarrow (SP) - 1$ (PC) $\leftarrow ((SP))$	Decrements the contents of the stack pointer by 1 and stores, in the program counter, the contents of the location specified by the stack pointer, executing a return from subroutine without restoring the PSW.	ß	-	0	0	0	0	0	-	0		
RETR	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) - 1 \\ (\text{PC}) \leftarrow ((\text{SP})) \\ (\text{PSW}_4 - \text{PSW}_7) \leftarrow ((\text{SP})) \end{array}$	Decrements the contents of the stack pointer by 1 and stores, in the program counter, the contents of the upper 4 bits of the PSW and the contents of the location specified by the stack pointer, executing a return from subroutine with restoration of the PSW.	93	-	0	0	-		。	-			-
Timer / Counter													-
EN TCNTI		Enables internal interrupt of timer / event counter. If an overflow condition occurs, then an interrupt will be generated.	25	0	0	-	。		-	0			-
DIS TCNTI		Disables internal interrupt of timer / event counter.	35	0	0	-	-	0	-	0	_		-
MOV A, T	(A) (T)	Moves the contents of the timer / counter into the accumulator.	42	0	-	0	0	0	0		0		-
MOV T A	(T) (A)	Moves the contents of the accumulator into the timer / counter.	62	0	-	-	0	0	0	-	0		-
STOP TCNT		Stops the operation of the timer / event counter.	65	0	-	-	0	0		0	_		
STRT CNT		Starts the event counter operation of the timer / counter when T1 changes from a low-level input to a high-level input.	45	0	-	0	0	0	-	0	-		-
STRT T		Starts the timer operation of the timer / counter. The timer is incremented every 32 machine cycles.	55	0	-	0	-	0		0	-	_	-
Miscellaneous									.				-
NOP		Uses one machine cycle without performing any operation.	8	0	0	。	-	-	-	э			-

4-230

μ PD80C35/C48, μ PD48

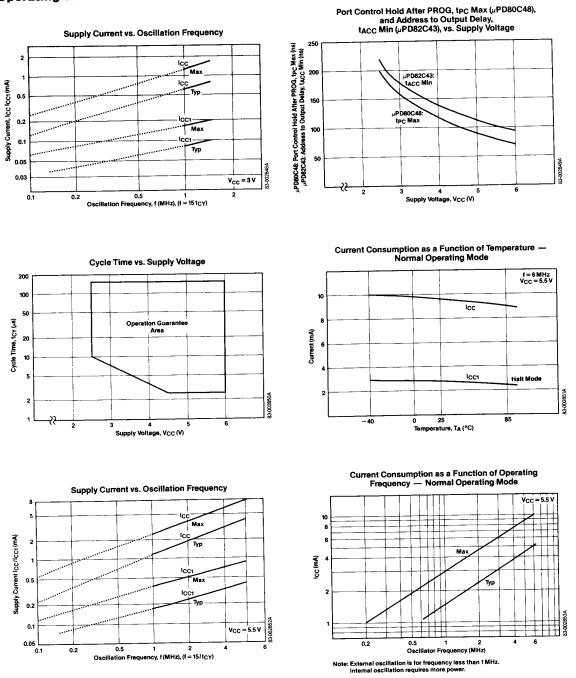
This Material Copyrighted By Its Respective Manufacturer

Note:

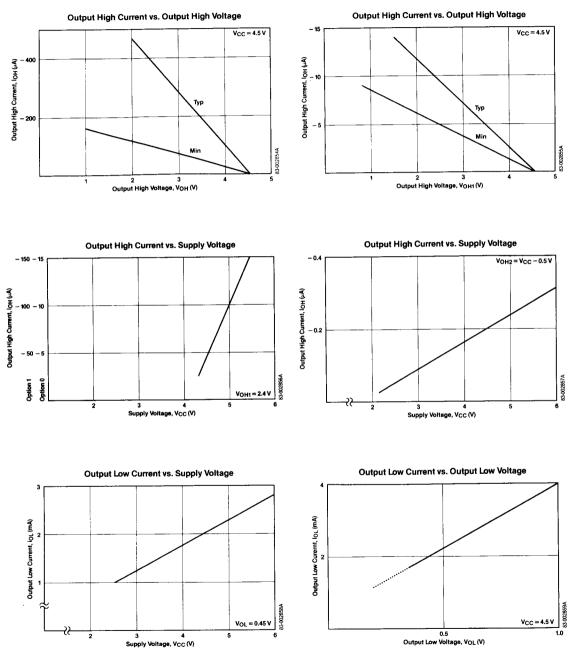
(i) Binary operation code designations r and p represent encoded values or the lowest-order bit value of specified registers and ports, respectively.

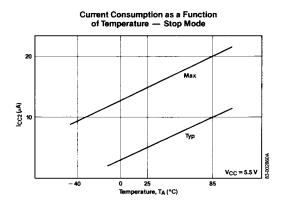
overflow in the accumulator (the auxiliary carry flag is set when there is an overflow of bit 3 of the accumulator) and clear the carry flags when there is no overflow. Flags that are specifically (2) Execution of the ADD, ADDC, and DA instructions affect the carry flags, which are not shown in the respective function equations. These instructions set the carry flags when there is an addressed by flag instructions are shown in the function equations for those instructions.

(3) References to addresses and data are specified in byte 1 and/or 2 in the opcode of the corresponding instruction.


(4) The hex value of n for specific registers is as follows:

```
(6) The hex value of x for specific accumulator or address bits is as follows:
           R6: n = E
R7: n = F
                                                                                            (5) The hex value of n for specific ports is as follows:
               R4: n = C
R5: n = D
                                                                                                                                P7: n = F
                                                                                                               P6: n = E
                                                                     @ R1:n = 1
                R2: n = A
R3: n = B
                                                                                                                                  P5: n = D
                                                                                                                  P4: n = C
                                                      b) Indirect addressing
a) Direct addressing
                                                                      @ R0: n = 0
                  R0: n = 8
                                   R1: n = 9
                                                                                                                                     P2: n = A
                                                                                                                    P1: n = 9
```


```
Page 6: x = D
Page 7: x ≡ F
                                                            Page 6: x = C
                                                                         Page 7: x = E
           B_6: x = D
B_7: x = F
                                                                                                           Page 4: x = 9
Page 5: x = B
                                                                           Page 5: x = A
                                                            Page 4: x = 8
           B<sub>4</sub>: x = 9
B<sub>5</sub>: x = B
                                                              Page 2: x = 4
                                                                              Page 3: x = 6
                                                                                                             Page 2: x = 5
                                                                                                                            Page 3: x = 7
              B<sub>2</sub>: x = 5
B<sub>3</sub>: x = 7
                                                                                              c) CALL instruction
                                                b) JMP instruction
a) JBb instruction
                                                               Page 0: x = 0
                                                                               Page 1: x = 2
                                                                                                                Page 0: x = 1
                                                                                                                               Page 1: x = 3
              B_0: x = 1
                               B<sub>1</sub>: x = 3
```



Operating Characteristics

Operating Characteristics (cont)

Operating Characteristics (cont)

