RF SOLUTIONS

DATA SHEET **UV1316 MK4 VHF/UHF/Hyperband PAL TV tuner**

Product specification

FEATURES

- Member of UV1300 MK4 family of small-sized full band tuners
- Systems CCIR: B/G, H, L, L', I and I'; OIRT: D/K
- Digitally-controlled (PLL) tuning via I²C-bus
- Reduced power consumption
- Software controlled weak signal booster
- Off-air, S-cable and hyperband channels from 48.25 MHz to 863.25MHz inclusive
- World standardized mechanical dimensions and pinning. Horizontal mounting is optionally available
- Various connector types available

ORDERING INFORMATION

ТҮРЕ	DESCRIPTION	ORDER NUMBER
UV1316/A I-4	Asymmetrical IF, IEC	3139 147 20691
UV1316/S I-4	Symmetrical IF, IEC	3139 147 20891
UV1316/S I H-4	Symmetrical IF, IEC, horizontal mount	3139 147 22111
UV1316/A I H-4	Asymmetrical IF, IEC, horizontal mount	3139 147 22101
UV1316/A L-4	Asymmetrical IF, IEC long	3139 147 22301
UV1316/A P-4	Asymmetrical IF, phono	3139 147 22411
UV1316/A L-H-4	Asymmetrical IF, IEC long, horizontial mount	3139 147 22421
UV1316/S L-4	Symmetrical IF, IEC long	3139 147 24111

MARKING

The following items of information are printed on a sticker that is on the top cover of the tuner:

- Type number
- Code number
- Origin letter of factory
- Change code
- Year and week code

DESCRIPTION

designed to meet a wide range of TV applications. It is a full band tuner suitable for CCIR systems B/G, H, L, L', I and I'. The low IF output impedance is designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

The UV1316 MK4 is backwards compatible with its predecessors, the UV1316 MK1, MK2 and MK3. In addition, a 5 level Analog Digital Converter comes standard with the MK4.

This tuner complies with the requirements of radiation, signal handling capability and immunity conforming to:

- CISPR 13 (1990) incl. amendment 1 (1992) and amendment 2 (1993) •
- European standards CENELEC EN55013, EN55020 •
- CISPR13 (4th Edition) •

SIGNAL	FREQUENCY ⁽¹⁾							
SIGNAL		(MHz)						
	SYSTEM B/G, H	SYSTEM L	SYSTEM L'(2)	SYSTEM I	SYSTEM I'			
Picture carrier	38.90	38.90	33.40	39.50	38.90			
Color	34.47	34.47	37.83	35.07	34.47			
Sound 1	33.40	32.40	39.90	33.50	32.90			
Sound 2	33.16	-	-	33.00	32.40			

INTERMEDIATE FREQUENCIES

Notes

(1) The oscillator frequency is above the input signal frequency.

(2) Does not cover channel FA.

CHANNEL COVERAGE

	OFF-A	IR CHANNELS	CABLE CHANNELS			
BAND	CHANNELS	FREQUENCY RANGE	CHANNELS	FREQUENCY RANGE		
		(MHz)		(MHz)		
Low band	E2 to C	48.25 to 82.25 ⁽³⁾	S01 to S08	69.25 to 154.25		
Mid band	E5 to E12	175.25 to 224.25	S09 to S38	161.25 to 439.25		
High band	E21 to E69	471.25 to 855.25 ⁽⁴⁾	S39 to S41	447.25 to 463.25		

Notes

⁽³⁾ Sufficient margin is available to tune down to 44.00MHz.

⁽⁴⁾ Sufficient margin is available to tune up to 865.25MHz.

UV1316 MK4

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
AGC	1	Automatic Gain Control Voltage
TU	2	Tuning voltage monitor (output)
AS	3	I ² C-Bus Address Select
SCL	4	I ² C-Bus Serial Clock
SDA	5	I ² C-Bus Serial Data
n.c.	6	Not Connected
Vs	7	Supply Voltage +5V
ADC	8	ADC Input ⁽⁵⁾
V _{ST}	9	Fixed tuning Supply Voltage +33V
I.F out 2 / d.n.c	10	Symmetrical I.F output 2 / Do not connect for asymmetrical
I.F out 1	11	Asymmetrical I.F Output / Symmetrical I.F output 1
GND	M1,M2,M3,M4	Mounting Tags (Ground)

NOTE ⁽⁵⁾ Standard 5 level Analog to Digital Converter

UV1316 MK4

LIMITING VALUES

Environmental conditions

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
Non-operational Cor	ditions					
T _{AMB}	Ambient temperature		-25	+85	°C	
RH	Relative humidity		-	95	%	
g _в	Bump acceleration	25g	-	245	m/s ²	
g s	Shock acceleration	50g	-	490	m/s ²	
	Vibration amplitude	10 to 55 Hz	-	0.35	mm	
Operational conditions						
Т _{амв}	Ambient temperature		-10	+65	°C	
RH	Relative humidity		-	95	%	

Limiting values under operational conditions

The tuner can be guaranteed to function properly under the following conditions.

SYMBOL	PARAMETER	PIN	MIN	TYP.	MAX.	UNIT
Vs	Supply voltage		4.75	5.00	5.50	V
V _{S(ripple)}	Peak to peak ripple voltage susceptibility ⁽⁶⁾	7	10	-	-	mV
I _s	Supply current		-	-	100	mA
V _{ST}	Tuning supply voltage		30	33	35	V
V _{ST(ripple)}	Peak to peak ripple voltage susceptibility	9	10	-	-	mV
I _{ST}	Tuning supply current		-	-	1.7	mA
V _{AGC}	AGC input voltage		-	4.0	4.5	V
		1				
ΔV_{AGC}	AGC input voltage range		0.5	-	4.0	V
I _{AGC}	AGC input current		-	-	20	μA
V _{AS}	Address select input voltage	3	-	-	5.5	V
V _{SCL}	Serial clock input voltage	4	-0.3	-	5.5	V
V _{SDA}	Serial data input voltage	5	-0.3	-	5.5	V
I _{SDA}	Serial data input current		-1	_	5	mA

NOTE

⁽⁶⁾ Sinusoidal ripple voltage superimposed on the 5V-supply voltage in the frequency range of 15 kHz to 500 kHz. Criteria for TV interference is >57 dB.

UV1316 MK4

ELECTRICAL DATA

Conditional data

Unless otherwise specified, all electrical values for Chapter "Electrical data" apply at the following conditions and the electrical performance is related to system B,G and H.

A proper function is guaranteed within the specified operational conditions but a certain deterioration of performance parameters may occur at the limits of operational conditions.

SYMBOL	PARAMETER	VALUE	UNIT
T _{AMB}	Ambient temperature	25 ± 5	°C
RH	Relative humidity	60 ± 15	%
Vs	Supply voltage +5V	5 ± 0.125	V
V _{AGC}	AGC supply voltage	4 ± 0.1	V
V _{ST}	Tuning supply voltage	33 ± 0.5	V
t _{pr}	Pre-heating time (+5V at pin 7)	10	Minutes
Z _{S(AE)}	Aerial source impedance (unbalanced)	75	Ω

Aerial input characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
VSWR	Reflection coefficient referred to 75Ω	Picture carrier at maximum gain	-	5	
	impedance				
V _{ant}	Antenna connection disturbance	< 950 MHz	-	46	dBμV
	voltage	0.950 < f < 2.15 GHz	-	54	dBμV

UV1316 MK4

GENERAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _B	Frequency range:					
	Low band		48.25	-	154.25	MHz
	Mid band		161.25	-	439.25	MHz
	High band		447.25	-	855.25	MHz
Δf_{B}	Margin:					
	For low band end (negative)		-2/+3	-	-	MHz
	For mid/high band		±3	-	-	MHz
Gv	Voltage gain:					
	Low and Mid band		40	45	-	dB
	High band		40	45	-	dB
	Gain taper - (All off-air channels)		-	-	8	dB
	Noise:					
	Low band		-	5	9	dB
	Mid band		-	5	9	dB
	High band		-	5	9	dB
ΔV_{AGC}	AGC input voltage range:					
	Low Band		40	50	-	dB
	Mid Band		40	50	-	dB
	High band		35	45	-	dB
α_{i}	Image rejection (nominal gain to 10					
	dB gain reduction):					
	Low and mid band	< 300 MHz	66	75	-	dB
	Mid band	> 300 MHz	60	78	-	dB
	High band		50	55	-	dB
α_{IF}	IF rejection (picture)		60	80	-	dB
	1/2 IF Susceptibility		60	80	-	dBμV
$lpha_{1/2RF}$	1/2 RF Rejection		60	-	-	dB
α_{s}	Sound-chroma moire rejection:					
	Off-air	Up to 40dB gain reduction	56	65	-	dB
	UHF	Up to 30dB gain reduction	56	75	-	dB
m _x	Cross modulation:					
	In-band					
	All bands (n±1)		66	-	-	$dB\mu V$
	Low band (n±2)		70	82	-	$dB\mu V$
	Mid band(n±2)		70	82	-	$dB\mu V$
	High band(n±2)		68	80	-	$dB\mu V$
	Out of band		-	100	-	dBμV

UV1316 MK4

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vosc	Oscillator voltage:					
	IF pin		-	70	85	$dB\mu V$
	All other pins		-	50	70	dBμV
	Overloading:					
	1dB gain compression		74	81	-	dBμV
	PLL lock-out		90	-	-	$dB\mu V$
	Tuning system interference:					
	Crystal harmonics interference	Input level 50 dBµV				
	rejection at IF output		54	-	-	dB
	Divider interference rejection at IF		57	-	-	dB
	output					
	Residual FM caused by IIC x-talk		-	-	5	kHz
V_{ESD}	Electrostatic discharge (ESD) on all					
	pins	Note 1	2	-	-	kV
V _{SURGE}	- On Antenna		4	-	-	kV
	- On Ground Pin		TBF			
	Oscillator characteristics:					
	Oscillator tuning resolution	Note 2	31.25	-		kHz
	Lock-in time		-	-	100	msec

NOTE

- 1. All the pins of the tuner are protected against electrostatic discharge (ESD) up to 2 kV. The product is in accordance with EIA/JES022-A114-A
- 2. Resolution 31.25kHz, 50.00kHz or 62.5 kHz (see table "Ratio select bits")

UV1316 MK4

AMPLITUDE RESPONSE

VISIBILITY TEST (INPUT IMMUNITY AND IMMUNITY FROM RADIATED FIELDS)

The tuners meet the requirements of the European Standard "*EN55020*", when measured in an adequate television receiver¹. The external AGC must be adjusted so that the picture carrier level (top sync) at the tuner output does not exceed 107 dB μ V at an input signal level of 74 dB μ V or greater.

Refer to section **IF LOAD** on page 14 for more details.

RADIATION

The tuners meet the requirements of the European Standard "*EN55013*" and "*CISPR13*" (1990), when measured in an adequate television receiver¹.

Note 1 : Or measured in our reference application board.

APPLICATION INFORMATION

A detailed description of the I^2 C-bus specification, with applications, is given in brochure "The I^2 C-bus and how to use it". This brochure may be ordered using the code number 9398 393 40011.

Table 1	l ² C-bus d	lata for	mat, 'И	/RITE' ı	node					
NAME	DVTE	7				BITS			0	ACK
NAME	DTIE	MSB							LSB	
Address Byte	ADB	1	1	0	0	0	MA1	MA0	R/W=0	А
Prog. Div. Byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8	А
Prog. Div. Byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0	А
Control Byte	СВ	1	СР	T2	T1	Т0	RSA	RSB	WSB	А
Band-switch byte	BB	Х	Х	Х	P4	P3	P2	P1	P0	A

I²C-bus data format. 'WRITE' mode

Table 2

Description of symbols used in Table 1

BIT	DESCRIPTION
MA1 and MA0	Programmable address bits (see Table 3)
R/W	Logic 0 for write mode
N14 to N0	Programmable divider bits; N=N14x2 ¹⁴ + N13x2 ¹³ ++ N1x2 ¹ +N0
СР	Charge pump current control bit:
	Logic 0 : Charge pump current is 20μA
	Logic 1 : Charge pump current is 100µA
T2,T1 and T0	Test bits (see table 4)
RSA and RSB	Reference divider ratio select bits (see Table 5)
WSB	Weak Signal Booster control bit
	Logic 0 : normal mode – no gain increase : IF filter is used
	Logic 1 : Weak Signal Booster activated : IF filter is by-passed
P0,P1,P2,P3,P4	Ports control bits :
	Logic 0 : Corresponding Port is "OFF". High impedance state (default)
	Logic 1 : Corresponding Port is "ON".

UV1316 MK4

I²C-bus address selection

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having several synthesizers (up to 4) in one system by applying a specific voltage on the AS input. The relationship between MA1 and MA0 and the input voltage applied to the AS input is given in Table 3.

Table 3ADDRESS SELECTION

MA1	MA0	ADDRESS	VOLTAGE APPLIED ON AS INPUT
0	0	C0	$0V$ to $0.1xV_{CC}$
0	1	C2	Open or $0.2xV_{CC}$ to $0.3xV_{CC}$
1	0	C4	$0.4 x V_{CC}$ to $0.6 x V_{CC}$
1	1	C6	$0.9xV_{CC}$ to $1.0xV_{CC}$

Table 4 TEST MODES

T2	T1	Т0	TEST MODES
0	0	0	Normal mode
0	0	1	Normal mode
0	1	0	Charge-pump is 'OFF ^{'(3)}
0	1	1	Byte BB ignored
1	1	0	Charge-pump is sinking current
1	1	1	Charge-pump is sourcing current
1	0	0	½ f _{REF} is available on port P3
1	0	1	⁽²⁾ 1/2 f _{DIV} is available on port P3

Notes

- 1. This is the default mode at *Power-On Reset*
- 2. The P3 port cannot be used when these test modes are active
- 3. $\frac{1}{2} f_{REF}$ is available on port P3

Table 5 REFERENCE DIVIDER RATIO SELECT BITS

RSA	RSB	REFERENCE DIVIDER RATIO	STEP SIZE (kHz)
Х	0	80	50 ⁽¹⁾
0	1	128	31.25 ⁽¹⁾
1	1	64	62.5 ⁽¹⁾

Notes

1. Crystal frequency or signal at XTIN of 4 MHz.

UV1316 MK4

CONTROL BYTE 2 :

Band switching	0	0	0	P4	P3	P2	P1	P0
Low Band	0	0	0	0	0	0	0	1
Mid Band	0	0	0	0	0	0	1	0
High Band	0	0	0	0	0	1	0	0

Ports 0 to 3 control the bandswitching.

TELEGRAM EXAMPLES (WRITE MODE):

Start – ADB – ACK – DB1 – ACK – DB2 – ACK – Stop
Start – ADB – ACK – CB – ACK – BB – ACK – Stop
Start – ADB – ACK – CB – ACK – Stop
Start – ADB – ACK – DB1 – ACK – DB2 – ACK – CB – ACK - BB – ACK – Stop
Start – ADB – ACK – CB – ACK – BB – ACK - DB1 – ACK – DB2 – ACK – Stop
Start – ADB – ACK – DB1 – ACK – DB2 – ACK – CB – ACK – Stop

Note:

=	start condition			
=	address byte	Stop	=	stop condition
=	acknowledge			
=	divider byte 1			
=	divider byte 2			
=	control byte			
=	band-switch byte			
	= = = = =	 start condition address byte acknowledge divider byte 1 divider byte 2 control byte band-switch byte 	 start condition address byte Stop acknowledge divider byte 1 divider byte 2 control byte band-switch byte 	 start condition address byte Stop = acknowledge divider byte 1 divider byte 2 control byte band-switch byte

For channel selection involving band switching, in order to ensure smooth tuning to the desired channel without causing unnecessary charge pump action, it is recommended to consider the difference between wanted channel frequency (fw) and the current channel frequency (fc):

If fw > fc, use telegram as :
 Start – ADB – ACK - DB1 – ACK – DB2 – ACK - CB – ACK - BB – ACK – Stop

If fw < fc, use telegram as :
 Start – ADB – ACK - CB – ACK – BB – ACK - DB1 – ACK - DB2 – ACK – Stop

Unnecessary charge pump action will result in very low tuning voltage ($V_T \approx 0V$) which may drive the oscillator to extreme conditions. Refer to Table 2 for recommendations on how to set the charge pump (CP) .

READ MODE; R/W = 1 (see Table 7)

Data can be read from the device by setting R/W bit to 1. After the slave address has been recognised, the device generates an ACKnowledge pulse and the first DATA byte (status byte) is transferred on the SDA line (MSB first). DATA is valid on the SDA line during a HIGH-level of the SCL clock signal. A second DATA byte can be read from the device if the microcontroller generates an ACKnowledge on the SDA line (master ACKnowledge). End of transmission will occur if no master ACKnowledge occurs. The device will then release the DATA line to allow the microcontroller to generate a STOP condition.

The POR flag is set to 1 at power-on. The flag is reset when an end-of-data is detected by the device (end of a READ sequence). Control of the loop is made possible with the in-LOCK flag FL which indicates when the loop is locked (FL=1).

The internal AGC status can be known from bit AGC (AGC=1), which indicates when the selected take-over point is reached.

UV1316 MK4

A built-in ADC is available on the P6/ADC pin. This converter can be used to apply AFC information to the microcontroller from the IF section of the television. The relationship between the bits A2,A1 and A0 is given in Table 8.

Table 6 'READ' data format

NAME	BYTE	BITS							
		MSB	(1)						LSB
Address Byte	ADB	1	1	0	0	0	MA1	MA0	R/W=1
Status Byte	SB	POR	FL	1	1	1	A2	A1	A0

Note:

1. MSB is transmitted first.

Table 7 Description of the bits used in Table 6

BIT	DESCRIPTION
MA1 and MA0	Programmable address bits (see Table 3)
R/W	Logic 1 for read mode
POR	Power-on reset flag :
	Logic 0 : after end of the first read sequence
	Logic 1 : at power-on
FL	In-lock flag :
	Logic 0 : loop is not locked
	Logic 1 : loop is locked
A2,A1 and A0	Digital outputs of the 5-level ADC (see Table 8)

ADC digital outputs (1) Table 8

A2	A1	A0	VOLTAGE APPLIED ON ADC INPUT
1	0	0	$0.6 x V_{CC}$ to $5.5 V$
0	1	1	$0.45 \text{xV}_{\text{CC}}$ to $0.6 \text{xV}_{\text{CC}}$
0	1	0	$0.30 \text{xV}_{\text{CC}}$ to $0.45 \text{xV}_{\text{CC}}$
0	0	1	$0.15 \text{xV}_{\text{CC}}$ to $0.30 \text{xV}_{\text{CC}}$
0	0	0	0 to 0.15xV _{CC}

Note:

1.

Accuracy is \pm 0.03 x V_{CC} No erratic codes in the transition 2.

TELEGRAM EXAMPLES (READ MODE):

Start – AB (R/W=1) – $XX^{(1)} - X^{(2)} - Stop$ Start – AB (R/W=1) – $XX^{(1)} - ACK - XX^{(1)} - X^{(2)} - Stop$

Notes

 $^{(1)}$ XX = Read status byte

 $^{(2)}$ X = No ACKnowledge from the master means end of sequence

POWER-ON RESET

The power-on detection threshold voltage VPOR is set to tbf V at room temperature. Below this threshold the device is reset to the power-on state.

At power-on state the following actions take place :

- The charge pump current is set to 100 μA
- The test bits T2, T1 and T0 are set to logic '001'. The charge pump can be either sinking or sourcing.
- The Weak Signal Booster is disabled
- All ports are OFF and the HIGH band is selected by default

Table 9 Default setting of the bits at POWER-ON RESET

NAME	BYTE	BITS							
		MSB							LSB
Address Byte	ADB	1	1	0	0	0	MA1	MA0	х
Divider Byte 1	DB1	0	х	х	х	х	х	х	Х
Divider Byte 2	DB2	х	х	х	х	х	х	х	х
Control Byte	СВ	1	1	1	1	0	х	х	0
Band Switch Byte	BB	Х	Х	Х	0	0	0	0	0

UV1316 MK4

VHF/UHF/Hyperband PAL TV tuner

TUNING SUPPLY VOLTAGE

Pin 9 must be set to a typical tuning voltage of 33V (maximum 35V and minimum 30V). Alternatively, a constant current of 1 to 1.5 mA can also be applied. Figure 3 shows an alternative supply from a 140V source. The Zener diode prevents the tuning voltage at pin 9 from exceeding 33V.

I.F BANDWIDTH (3 dB)

The typical bandwidth is 12 MHz.

I.F OUTPUT IMPEDANCE

(measured at 36.15 MHz)

Asymmetrical	: 37 + j54Ω
Symmetrical	: 87.6 + j21Ω

I²C-BUS LOAD

The UV1316E MK3 has a series resistor of 370 Ω and 370 Ω respectively in each of the SCL and SDA lines and a shunt capacitance of 18pF to ground at the pins. A capacitive load of typically 56pF is allowed at these pins for standard 100kHz IIC bus mode. See Fig 4 below.

Fig 4. Internal I²C bus loading

I.F LOAD

The maximum permissible resistive load is 280Ω , the maximum capacitive load is 40pF.

To guarantee optimum signal handling performance, the reactive load of the I.F circuitry (interconnections, saw filter) has to be tuned to tuner I.F center frequency according to the following formula:

$$L_{tune} = \{(2*\pi*f)^{2}*(C_{int} + C_{stray} + C_{SAW})\}^{-1}$$

Where C_{int} = internal capacitance of the tuner = 2.7pF for asymmetrical = 1.35pF for symmetrical C_{stray} = stray capacitance attributed to layout in the chassis

 C_{SAW} = intrinsic capacitance of the SAW filter used/selected

f =desired I.F frequency, usually centered between picture and sound.

The IF output is to be maintained at 107 dB μ V maximum. In case this limit is exceeded, the tuner gain should be reduced accordingly.

UV1316 MK4

AUTOMATIC GAIN CONTROL (AGC)

AGC Characteristics

TYPICAL AGC CURVES

UV1316 MK4

MECHANICAL DATA

See product drawing 3139 149 0157

AERIAL CONNECTIONS

Standard IEC socket female 75Ω .

SOLDERABILITY

The solderability of pins and mounting tags when tested initially and after 16 hour steam ageing in accordance with "*IEC 60068-2-20*", test Ta, method 1 (solder bath 235°C for 2s), results in a wetted area of 95%. No de-wetting will occur when soldered at 260°C for 5s.

RESISTANCE TO SOLDERING HEAT

The product will not be damaged when tested in accordance with "*IEC 60068-2-20*", test Tb, ,method 1A (solder bath 260° C for 10 ± 1 s).

MASS

Approximately 34g (IEC)

ROBUSTNESS OF PINS

The pins will not be damaged when tested in accordance with "*IEC 60068-2-21*":

- Test Ua1, tensile of 10N in axial direction
- Test Ua2, thrust of 4N in axial direction

PUNCHING PATTERN OF CHASSIS PCB

For optimum mounting of the tuner to a PCB the following punching pattern is recommended (see 3139 149 0157).

The tuner must be mounted without clearance between the tuner supporting surface and the printed circuit board (PCB). When mounted in this way, the tuner must be soldered to the PCB. This can be achieved by pressing the unit vertically onto the PCB during soldering.

Example of Carton Box:

PACKAGING INFO

The products are packed in the carton box and transferred to customers by Pallet Transport.

			Vertical		Horizontal			
Туре		Dimension b x w x h (cm)	No of sets	Gross wt (kg)	Dimension b x w x h (cm)	No of sets	Gross wt (kg)	
IEC-I	Carton	46 x 34 x 7.5	98	3.9	46 x 34 x 9.4	60	3.04	
	Pallet	120 x 105 x 105	7742	329.7	120 x 105 x 105	3900	219.6	
IEC-L	Carton	46 x 34 x 8.2	98	3.91				
	Pallet	120 x 105 x 105	7056	303.6				

Carton Boxes are made of Corrugated Fibreboard which are free of environmentally banned substances.

UV1316 MK4

Rev L: 05.11.2004

UV1316 MK4

 \oplus

AERIAL CONNECTOR TYPE

CONNECTOR TYPE	Connector Length, Cl	BODY LENGTH, BL	OVERALL DIAMETER, OD	INNER DIAMETER, ID
IEC-I	1 4 .8±0.5	12.3±0.3	11.0±0.1	8.0±0.2
IEC-L	21.2±0.5	12.3±0.3	11.2 ±0.1	9.0±0.3
F-F	17.5±0.5	14.1±0.5	11.0±0.2	
F-G	22.2±0.5	16.5±0.3	12.15±0.15	-
PHONO-P	8.7±0.5		8.35+0/-0.1	

MALE CONNECTOR REQUIREMENT

UV1316 MK4

Document revision history

Rev #	Date	Approved by	Remarks
	03-01-15		draft create by Toh Yeow Teng
	03-01-22		draft - changes in pg 6
а	03-03-03		draft - changes in pg 2, 6, 7, 9 and last page
а	03-03-24		draft - changes in pg 2, 6, 10 to 15
а	03-04-07		draft - changes in pg 3, 6, 7, 9
а	03-04-22	Toh Yeow Teng	Trigger by Toh YT changes in pg 2, 6, 15, 16, 17 - 20
b	03-05-09	Toh Yeow Teng	Trigger by Toh YT Preliminary to Product, Updating pg 2, 8, 9, 15, 16
С	03-06-09	Toh Yeow Teng	Trigger by Toh YT Updating pg 6 only
d	03-09-10	Toh Yeow Teng	Trigger by Johnny Lu Updating Mechanical drawings
е	03-10-10	Ng Bee Theng	Trigger by Johnny Lu Updating Mechanical drawings
f	04-01-12	Ng Bee Theng	Trigger by Belle/Heng SH pg 2 - updating ordering information, pg 19 to 23 - mechanical drawings pg 26 – RF Solutions Sales Offices,
g	04-02-04	Alan Yeo	Trigger by Heng SH pg 19 – updating packing info
h	04-02-12	Toh Yeow Teng	Trigger by Heng SH/Daniel Lee pg 2 – ordering information (add 2 new type UV1316/A P-4 and UV1316/A L H-4) pg 20 to 24 – updating mechanical drawings
i	04-02-18	Toh Yeow Teng	Trigger by Daniel Lee; pg 3 – Intermediate frequencies (SYSTEM L' refer to note 2)
j	04-02-23	Toh Yeow Teng	Trigger by Daniel Lee, pg 2 – ordering information description change for UV1316/A P-4 pg 3 – updating note 2 should be Does not cover channel FA
k	04-05-20	Toh Yeow Teng	Trigger by Heng SH; Updating Mechanical drawings
L	04-11-05	Lim Kui Yong	Trigger by Belle Ng; Pg 2 : add new type no. UV1316/S L-4

UV1316 MK4

DEFINITIONS

Data sheet status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specification.		
Application Information			
Where application information is given, it is advisory and does not form part of the specification			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I² C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips I²C patent to use the components in the I²C systems to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

RF Solutions Sales Offices

Refer to : Internet: www.rfsolutions.philips.com

© Philips Electronics N.V. 2004.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

