- Organization... 524288 by 8 Bits
- Single 5-V Power Supply
- Industry Standard 32-Pin Dual In-Line Package and 32-Lead Plastic Leaded Chip Carrier
- All Inputs/Outputs Fully TTL Compatible
- Static Operation (No Clocks, No Refresh)
- Max Access/Min Cycle Time
$V_{\text {CC }} \pm 10 \%$
'27C/PC040-10 100 ns
'27C/PC040-12 120 ns
'27C/PC040-15 150 ns
- 8-Bit Output For Use in Microprocessor-Based Systems
- Power-Saving CMOS Technology
- 3-State Output Buffers
- 400-mV Assured DC Noise Immunity With Standard TTL Loads
- Latchup Immunity of $\mathbf{2 5 0} \mathbf{~ m A}$ on All Input and Output Pins
- No Pullup Resistors Required
- Low Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$)
- Active . . . 275 mW Worst Case
- Standby ... 0.55 mW Worst Cas E (CMOS-Input Levels)
- Temperature Range Options

description

The TMS27C040 devices are 524288 by 8-bit (4194304-bit), ultraviolet (UV) light erasable, electrically programmable read-only memories (EPROMs).

The TMS27PC040 devices are 524288 by 8 -bit (4194304-bit), one-time programmable (OTP) electrically programmable read-only memories (PROMs).
These devices are fabricated using CMOS technology for high speed and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by the Series 74 TTL circuits. Each output can drive one Series 74 TTL circuit without external resistors.

TMS27C040
J PACKAGE
(TOP VIEW)

VPP	1	\cup_{32}	V_{cc}
A16	2	31	A18
A15	3	30	A17
A12	4	29	A14
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	$\overline{\mathrm{G}}$
A2	10	23	A10
A1	11	22	E
A0	12	21	DQ
DQ0	13	20	DQ6
DQ1	14	19	DQ5
DQ2	15	18	DQ4
GND	16	17	DQ3

TMS27PC040
FM PACKAGE (TOP VIEW)

PIN NOMENCLATURE	
A0-A18	Address Inputs
DQ0-DQ7	Inputs (programming)/Outputs
$\overline{\mathrm{E}}$	Chip Enable
\bar{G}	Output Enable
GND	Ground
VCC	$5-V$ Supply
VPP	$13-V$ Power Supply \dagger

\dagger Only in program mode.

TMS27C040 524288 BY 8-BIT UV ERASABLE
 TMS27PCO40 524288 BY 8-BIT
 PROGRAMMABLE READ-ONLY MEMORY

SMLS040F - NOVEMBER 1990 - REVISED SEPTEMBER 1997

description (continued)

The data outputs are 3-state for connecting multiple devices to a common bus
The TMS27C040 is offered in a 600-mil ceramic dual-in-line package (J suffix). The TMS27C040 is offered with two choices of temperature ranges of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (JL suffix) and $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (JE suffix). (See Table 1.)

The TMS27PC040 is offered in a 32-lead plastic leaded chip carrier package (FM suffix). The TMS27PC040 is offered with two choices of temperature ranges of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (JL suffix) and $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (JE suffix).

Table 1. Temperature Range Suffixes

FUNCTION	SUFFIX FOR OPERATING FREE-AIR TEMPERATURE RANGES	
	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TMS27C040-XXX	JL	JE
TMS27PC040-XXX	FML	FME

These EPROMs and PROMS operate from a single 5-V supply (in the read mode), and they are ideal for use in microprocessor-based systems. One other (13 V) supply is needed for programming. All programming signals are TTL level. For programming outside the system, existing EPROM programmers can be used.

operation

The seven modes of operation are listed in Table 2. The read mode requires a single 5-V supply. All inputs are TTL level except for $\mathrm{V}_{\text {PP }}$ during programming (13 V), and $\mathrm{V}_{\mathrm{H}}(12 \mathrm{~V})$ on A 9 for the signature mode.

Table 2. Operation Modes

MODE	FUNCTION \dagger						
	$\overline{\mathrm{E}}$	$\overline{\mathrm{G}}$	VPP	$\mathrm{V}_{\text {CC }}$	A9	A0	DQ0-DQ7
Read	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	X	V_{CC}	X	X	Data Out
Output Disable	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	V_{CC}	V_{CC}	X	X	Hi-Z
Standby	V_{IH}	X	V_{CC}	V_{CC}	X	X	Hi-Z
Programming	$\mathrm{V}_{\text {IL }}$	V_{IH}	$V_{\text {PP }}$	V_{CC}	X	X	Data In
Program Inhibit	V_{IH}	V_{IH}	VPP	V_{CC}	X	X	Hi-Z
Verify	V_{IH}	$\mathrm{V}_{\text {IL }}$	VPP	V_{CC}	X	X	Data Out
Signature Mode	$\mathrm{V}_{\text {IL }}$	VIL	V_{CC}	V_{CC}	$\mathrm{V}_{\mathrm{H}}{ }^{\ddagger}$	$\mathrm{V}_{\text {IL }}$	MFG Code 97
						V_{IH}	Device Code 50

$\dagger \mathrm{X}$ can be V_{IL} or V_{IH}
$\ddagger \mathrm{V}_{\mathrm{H}}=12 \mathrm{~V} \pm 0.5 \mathrm{~V}$

read/output disable

When the outputs of two or more TMS27C040s or TMS27PC040s are connected in parallel on the same bus, the output of any particular device in the circuit can be read with no interference from competing outputs of the other devices. To read the output of a single device, a low level signal is applied to the $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ pins. All other devices in the circuit should have their outputs disabled by applying a high level signal to one of these pins.

latchup immunity

Latchup immunity on the TMS27C040 and TMS27PC040 is a minimum of 250 mA on all inputs and outputs. This feature provides latchup immunity beyond any potential transients at the P.C. board level when the EPROM is interfaced to industry standard TTL or MOS logic devices. The input/output layout approach controls latchup without compromising performance or packing density.

TMS27C040 524288 BY 8-BIT UV ERASABLE
 TMS27PC040 524288 BY 8-BIT PROGRAMMABLE READ-ONLY MEMORY

power down

Active I ICC supply current can be reduced from 50 mA to 1 mA by applying a high TTL input on $\overline{\mathrm{E}}$ and to $100 \mu \mathrm{~A}$ by applying a high CMOS input on $\overline{\mathrm{E}}$. In this mode all outputs are in the high-impedance state.

erasure (TMS27C040)

Before programming, the TMS27C040 EPROM is erased by exposing the chip through the transparent lid to a high intensity UV-light (wavelength 2537 Å). The recommended minimum exposure dose (UV intensity \times exposure time) is $15-\mathrm{W} \cdot \mathrm{s} / \mathrm{cm}^{2}$. A typical $12-\mathrm{mW} / \mathrm{cm}^{2}$, filterless UV lamp erases the device in 21 minutes. The lamp must be located about 2.5 cm above the chip during erasure. After erasure, all bits are in the high state. Normal ambient light contains the correct wavelength for erasure; therefore, when using the TMS27C040, the window must be covered with an opaque label. After erasure (all bits in logic high state), logic lows are programmed into the desired locations. A programmed low can be erased only by UV light.

initializing (TMS27PC040)

The OTP TMS27PC040 PROM is provided with all bits in logic high state, then logic lows are programmed into the desired locations. Logic lows programmed into an OTP PROM cannot be erased.

SNAP! Pulse programming

The TMS27C040 and TMS27PC040 are programmed by using the SNAP! Pulse programming algorithm. The programming sequence is shown in the SNAP! Pulse programming flow chart shown in Figure 1.
The initial setup is $\mathrm{V}_{\mathrm{PP}}=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}$, and $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}$. Once the initial location is selected, the data is presented in parallel (eight bits) on pins DQ0 through DQ7. Once addresses and data are stable, the programming mode is achieved when \bar{E} is pulsed low $\left(V_{I L}\right)$ with a pulse duration of $t_{w(P G M)}$. Every location is programmed only once before going to interactive mode.
In the interactive mode, the word is verified at $\mathrm{V}_{\mathrm{PP}}=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}$, and $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$. If the correct data is not read, the programming is performed by pulling \bar{E} low with a pulse duration of $t_{w(P G M)}$. This sequence of verification and programming is performed up to a maximum of 10 times. When the device is fully programmed, all bytes are verified with $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 10 \%$.

program inhibit

Programming can be inhibited by maintaining high level inputs on the $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ pins.

program verify

Programmed bits can be verified with $\mathrm{V}_{\mathrm{PP}}=13 \mathrm{~V}$ when $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$, and $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}$.

signature mode

The signature mode provides access to a binary code identifying the manufacturer and type. This mode is activated when A9 (pin 26) is forced to 12 V . Two identifier bytes are accessed by toggling A0. All other addresses must be held low. The signature code for the TMS27C040 is 9750 . A0 low selects the manufacturer's code 97 (Hex), and A0 high selects the device code 50 (Hex), as shown in Table 3.

Table 3. Signature Mode

IDENTIFIER \dagger	PINS									
	A0	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	HEX
MANUFACTURER CODE	V_{IL}	1	0	0	1	0	1	1	1	97
DEVICE CODE	V_{IH}	0	1	0	1	0	0	0	0	50

[^0]

Figure 1. SNAP! Pulse Programming Flow Chart

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers are for the J package.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger
Supply voltage range, V_{CC} (see Note 1) .. -0.6 V to 7 V

Input voltage range (see Note 1), All inputs except A9 0.6 V to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ A9
-0.6 V to 13 V
Output voltage range, with respect to V_{SS} (see Note 1) 0.6 V to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ Operating free-air temperature range ('27C040-__JL and '27PC040___FML) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Operating free-air temperature range ('27C040__ JE and '27PC040__FME) $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage temperature range, $T_{\text {stg }}$
$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GND.
recommended operating conditions

				MIN	NOM	MAX	UNIT
		Read mode (see No		4.5	5	5.5	V
$V_{\text {CC }}$	Supply voitage	SNAP! Pulse progra	rithm	6.25	6.5	6.75	V
		Read mode		$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{V}_{\mathrm{CC}}+0.6$	V
	Supply voltage	SNAP! Pulse progra	rithm	12.75	13	13.25	V
	High-lovel dc input voltage		TTL	2		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
	Votage		CMOS	$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
			TTL	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low-level dc input voltage		CMOS	-0.5		0.2	V
T_{A}	Operating free-air temperature	$\begin{array}{\|l} \text { '27C040-__JL } \\ \text { '27PC040_-_FML } \end{array}$		0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	'27C040-__JE		-40		85	${ }^{\circ} \mathrm{C}$

NOTE 2: $V_{C C}$ must be applied before or at the same time as $V_{P P}$ and removed after or at the same time as $V_{P P}$. The device must not be inserted into or removed from the board when $V_{P P}$ or $V_{C C}$ is applied.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER			TEST CONDITIONS	MIN MAX	UNIT
V_{OH}	High-level dc output voltage		$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	V
			$\mathrm{I} \mathrm{OH}=-20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.1$	
$\mathrm{V}_{\text {OL }}$	Low-level dc output voltage		$\mathrm{l} \mathrm{OL}=2.1 \mathrm{~mA}$	0.4	V
			$\mathrm{IOL}=20 \mu \mathrm{~A}$	0.1	
1	Input current (leakage)		$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to 5.5 V	± 1	$\mu \mathrm{A}$
Io	Output current (leakage)		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	± 1	$\mu \mathrm{A}$
IPP1	$V_{\text {PP }}$ supply current		$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	10	$\mu \mathrm{A}$
IPP2	VPP supply current (during program pulse)		$\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V}$	50	mA
${ }^{\text {I CC1 }}$	$\mathrm{V}_{\text {CC }}$ supply current (standby)	TTL-Input level	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}$	1	mA
		CMOS-Input level	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}$	100	$\mu \mathrm{A}$
${ }^{\text {I CC2 }}$	V_{CC} supply current (active)		$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \quad \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{t}_{\text {cycle }}=\text { minimum cycle time }, \\ & \text { outputs opent } \end{aligned}$	50	mA

\dagger Minimum cycle time $=$ maximum access time.
capacitance over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{f}=\mathbf{1} \mathrm{MHz} \ddagger$

PARAMETER		TEST CONDITIONS	MIN TYP§	MAX	UNIT
C_{i}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	4	8	pF
C_{0}	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	8	12	pF

\ddagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
§ Capacitance measurements are made on sample basis only.
switching characteristics over recommended ranges of operating conditions (see Notes 3 and 4)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \hline \text { '27C040-10 } \\ & \text { '27 PC040-10 } \end{aligned}$	$\begin{aligned} & \hline \text { '27C040-12 } \\ & \text { '27 PC040-12 } \end{aligned}$	$\begin{aligned} & \hline \text { '27C040-15 } \\ & \text { '27 PC040-15 } \end{aligned}$	UNIT
		MIN MAX	MIN MAX	MIN MAX	
$\mathrm{t}_{\mathrm{a}(\mathrm{A})}$ Access time from address	$C_{L}=100 \mathrm{pF},$ 1 Series 74 TTL load, Input $\mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}$, Input $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$	100	120	150	ns
$\mathrm{ta}_{\mathrm{a}}(\mathrm{E}) \quad$ Access time from chip enable		100	120	150	ns
ten(G) Output enable time from $\overline{\mathrm{G}}$		50	50	50	ns
tdis Output disable time from $\overline{\mathrm{G}}$ or $\overline{\mathrm{E}}$, whichever occurs first		050	050	050	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{A})}$Output data valid time after change of address, $\overline{\mathrm{E}}$, or $\overline{\mathrm{G}}$, whichever occurs first \dagger		0	0	0	ns

\dagger Value calculated from $0.5-\mathrm{V}$ delta to measured output level.
NOTES: 3. For all switching characteristics the input pulse levels are 0.4 V to 2.4 V . Timing measurements are made at 2 V for logic high and 0.8 V for logic low. (See Figure 2)
4. Common test conditions apply for $t_{\text {dis }}$ except during programming.
switching characteristics for programming: $\mathrm{V}_{\mathrm{C}}=6.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PP}}=13 \mathrm{~V}$ (SNAP! Pulse), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 3)

	PARAMETER	MIN	MAX
	UNIT		
$\mathrm{t}_{\text {dis }(G)}$	Output disable time from $\overline{\mathrm{G}}$	0	100
$\mathrm{t}_{\text {en }}(\mathrm{G})$	Output enable time from $\overline{\mathrm{G}}$	ns	

NOTE 3: For all switching characteristics the input pulse levels are 0.4 V to 2.4 V . Timing measurements are made at 2 V for logic high and 0.8 V for logic low. (See Figure 2)
timing requirements for programming

			MIN	NOM	MAX	UNIT
t_{w} (PGM)	Pulse duration, program	SNAP! Pulse programming algorithm	95	100	105	$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}(\mathrm{A})$	Setup time, address		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}(\mathrm{E})$	Setup time, $\overline{\mathrm{E}}$		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}(\mathrm{G})$	Setup time, $\overline{\mathrm{G}}$		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}(\mathrm{D})$	Setup time, data		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}$ (VPP)	Setup time, V_{PP}		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}(\mathrm{VCC})$	Setup time, V_{CC}		2			$\mu \mathrm{s}$
th(A)	Hold time, address		0			$\mu \mathrm{s}$
th($\mathrm{D}^{\text {(}}$	Hold time, data		2			$\mu \mathrm{s}$

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and fixture capacitance.
B. AC testing inputs are driven at 2.4 V for logic high and 0.4 V for logic low. Timing measurements are made at 2 V for logic high and 0.8 V for logic low for both inputs and outputs.

Figure 2. AC Testing Output Load Circuit and Waveform

Figure 3. Read-Cycle Timing

PARAMETER MEASUREMENT INFORMATION

† 13-V V_{PP} and $6.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ for SNAP! Pulse programming
Figure 4. Program-Cycle Timing (SNAP! Pulse Programming)

[^1]

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: $\dagger \overline{\mathrm{E}}=\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{A} 1-\mathrm{A} 8=\mathrm{V}_{\mathrm{IL}}, \mathrm{A} 9=\mathrm{V}_{\mathrm{H}}, \mathrm{A} 10-\mathrm{A} 18=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$.

[^1]: NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Falls within JEDEC MS-016

