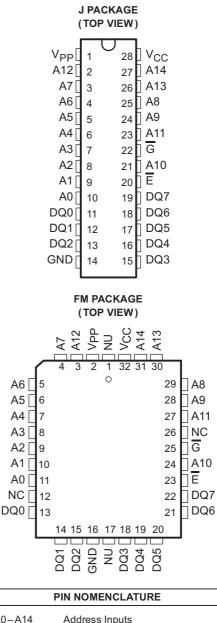
- Organization ... 32768 by 8 Bits .
- Single 5-V Power Supply
- Pin Compatible With Existing 256K MOS ROMs, PROMs, and EPROMs
- All Inputs / Outputs Fully TTL Compatible
- Max Access/Min Cycle Time

V_{CC} ± 10% '27C/PC256-10


'27C/PC256-10	100 ns
'27C/PC256-12	120 ns
'27C/PC256-15	150 ns
'27C/PC256-17	170 ns
'27C/PC256-20	200 ns
'27C/PC256-25	250 ns

- Power Saving CMOS Technology
- Very High-Speed SNAP! Pulse Programming
- **3-State Output Buffers**
- 400-mV Minimum DC Noise Immunity With Standard TTL Loads
- Latchup Immunity of 250 mA on All Input and Output Lines
- Low Power Dissipation (V_{CC} = 5.5 V)
 - Active ... 165 mW Worst Case
 - Standby ... 1.4 mW Worst Case (CMOS Input Levels)
- **Temperature Range Options** •
- 256K EPROM Available With MIL-STD-883C **Class B High Reliability Processing** (SMJ27C256)

description

The TMS27C256 series are 32768 by 8-bit (262144-bit), ultraviolet (UV) light erasable, electrically programmable read-only memories (EPROMs).

The TMS27PC256 series are 32768 by 8-bit (262144-bit), one-time programmable (OTP) electrically programmable read-only memories (PROMs).

A0_A14	Address Inputs
	•
	Inputs (programming)/Outputs
E	Chip Enable/Powerdown
G	Output Enable
GND	Ground
NC	No Internal Connection
NU	Make No External Connection
Vcc	5-V Power Supply
V _{PP}	13-V Power Supply [†]
	NC NU

[†]Only in program mode

A5

A4

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

description (continued)

These devices are fabricated using power-saving CMOS technology for high speed and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL circuits without the use of external pull-up resistors. Each output can drive one Series 74 TTL circuit without external resistors.

The data outputs are 3-state for connecting multiple devices to a common bus. The TMS27C256 and the TMS27PC256 are pin compatible with 28-pin 256K MOS ROMs, PROMs, and EPROMs.

The TMS27C256 EPROM is offered in a dual-in-line ceramic package (J suffix) designed for insertion in mounting-hole rows on 15,2-mm (600-mil) centers. The TMS27PC256 OTP PROM is supplied in a 32-lead plastic leaded chip-carrier package using 1,25-mm (50-mil) lead spacing (FM suffix).

The TMS27C256 and TMS27PC256 are offered with two choices of temperature ranges of 0° C to 70° C (JL and FML suffixes) and -40° C to 85° C (JE and FME suffixes). See Table 1.

All package styles conform to JEDEC standards.

EPROM AND	SUFFIX FOR OPERATING FREE-AIR TEMPERATURE RANGES				
OTP PROM	0°C TO 70°C	– 40°C TO 85°C			
TMS27C512-xxx	JL	JE			
TMS27PC512-xxx	FML	FME			

Table 1. Temperature Range Suffixes

These EPROMs and OTP PROMs operate from a single 5-V supply (in the read mode), thus are ideal for use in microprocessor-based systems. One other 13-V supply is needed for programming . All programming signals are TTL level. These devices are programmable by the SNAP! Pulse programming algorithm. The SNAP! Pulse programming algorithm uses a V_{PP} of 13 V and a V_{CC} of 6.5 V for a nominal programming time of four seconds. For programming outside the system, existing EPROM programmers can be used. Locations can be programmed singly, in blocks, or at random.

operation

The seven modes of operation are listed in Table 2. The read mode requires a single 5-V supply. All inputs are TTL level except for V_{PP} during programming (13 V for SNAP! Pulse), and 12 V on A9 for the signature mode.

				MODE	:†			
FUNCTION	READ	OUTPUT DISABLE	STANDBY	PROGRAMMING	VERIFY	PROGRAM INHIBIT	SIGNA MO	ATURE DE
ш	VIL	VIL	VIH	VIL	VIH	VIH	V	IL
G	VIL	VIH	Х	VIH	VIL	Х	V	IL
V _{PP}	V _{CC}	V _{CC}	V _{CC}	V _{PP}	V _{PP}	V _{PP}	V	00
V _{CC}	VCC	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V	CC
A9	Х	Х	Х	Х	Х	Х	V _H ‡	V _H ‡
A0	Х	Х	Х	Х	Х	Х	VIL	VIH
							CO	DE
DQ0-DQ7	Data Out	Hi-Z	Hi-Z	Data In	Data Out	Hi-Z	MFG	DEVICE
							97	04

Table 2. Operation Modes

[†] X can be VIL or VIH.

 $= 12 \vee \pm 0.5 \vee$.

read/output disable

When the outputs of two or more TMS27C256s or TMS27PC256s are connected in parallel on the same bus, the output of any particular device in the circuit can be read with no interference from the competing outputs of the other devices. To read the output of a single device, a low-level signal is applied to the \overline{E} and \overline{G} pins. All other devices in the circuit should have their outputs disabled by applying a high-level signal to one of these pins. Output data is accessed at pins DQ0 through DQ7.

latchup immunity

Latchup immunity on the TMS27C256 and TMS27PC256 is a minimum of 250 mA on all inputs and outputs. This feature provides latchup immunity beyond any potential transients at the P.C. board level when the devices are interfaced to industry-standard TTL or MOS logic devices. Input-output layout approach controls latchup without compromising performance or packing density.

power down

Active I_{CC} supply current can be reduced from 30 mA to 500 μ A (TTL-level inputs) or 250 μ A (CMOS-level inputs) by applying a high TTL or CMOS signal to the \overline{E} pin. In this mode all outputs are in the high-impedance state.

erasure (TMS27C256)

Before programming, the TMS27C256 EPROM is erased by exposing the chip through the transparent lid to a high intensity ultraviolet light (wavelength 2537 Å). EPROM erasure before programming is necessary to assure that all bits are in the logic high state. Logic lows are programmed into the desired locations. A programmed logic low can be erased only by ultraviolet light. The recommended minimum exposure dose (UV intensity × exposure time) is 15-W•s/cm². A typical 12-mW/cm², filterless UV lamp erases the device in 21 minutes. The lamp should be located about 2.5 cm above the chip during erasure. It should be noted that normal ambient light contains the correct wavelength for erasure. Therefore, when using the TMS27C256, the window should be covered with an opaque label.

initializing (TMS27PC256)

The one-time programmable TMS27PC256 PROM is provided with all bits in the logic high state, then logic lows are programmed into the desired locations. Logic lows programmed into an OTP PROM cannot be erased.

SNAP! Pulse programming

The 256K EPROM and OTP PROM are programmed using the TI SNAP! Pulse programming algorithm illustrated by the flowchart in Figure 1, which programs in a nominal time of four seconds. Actual programming time varies as a function of the programmer used.

Data is presented in parallel (eight bits) on pins DQ0 to DQ7. Once addresses and data are stable, \overline{E} is pulsed.

The SNAP! Pulse programming algorithm uses initial pulses of 100 microseconds (μ s) followed by a byte verification to determine when the addressed byte has been successfully programmed. Up to 10 (ten) 100- μ s pulses per byte are provided before a failure is recognized.

The programming mode is achieved when $V_{PP} = 13 \text{ V}$, $V_{CC} = 6.5 \text{ V}$, $\overline{G} = V_{IH}$, and $\overline{E} = V_{IL}$. More than one device can be programmed when the devices are connected in parallel. Locations can be programmed in any order. When the SNAP! Pulse programming routine is complete, all bits are verified with $V_{CC} = V_{PP} = 5 \text{ V}$.

program inhibit

Programming can be inhibited by maintaining a high level input on the \overline{E} pin.

program verify

Programmed bits can be verified with $V_{PP} = 13 \text{ V}$ when $\overline{G} = V_{IL}$ and $\overline{E} = V_{IH}$.

signature mode

The signature mode provides access to a binary code identifying the manufacturer and type. This mode is activated when A9 is forced to 12 V. Two identifier bytes are accessed by toggling A0. All other addresses must be held low. The signature code for these devices is 9704. A0 selects the manufacturer's code 97 (Hex), and A0 high selects the device code 04, as shown in Table 3.

IDENTICIED [†]		_			PII	VS	_		_	
IDENTIFIER [†]	A0	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	HEX
MANUFACTURER CODE	VIL	1	0	0	1	0	1	1	1	97
DEVICE CODE	VIH	0	0	0	0	0	1	0	0	04

Table 3. Signature Mode

 $\overline{TE} = \overline{G} = V_{IL}$, A9 = V_H, A1 – A8 = V_{IL}, A10 – A15 = V_{IL}, V_{PP} = V_{CC}, $\overline{PGM} = V_{IH}$ or V_{IL}.

TMS27C256 32768 BY 8-BIT UV ERASABLE TMS27PC256 32768 BY 8-BIT **PROGRAMMABLE READ-ONLY MEMORIES**

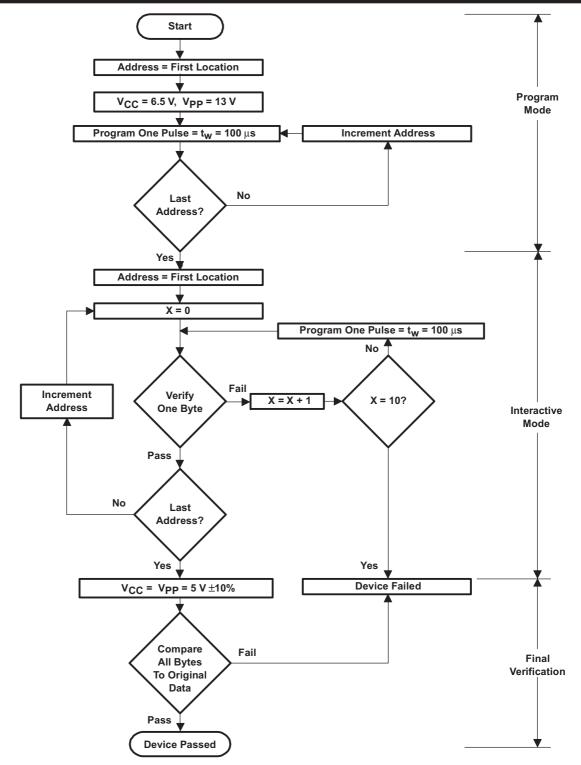
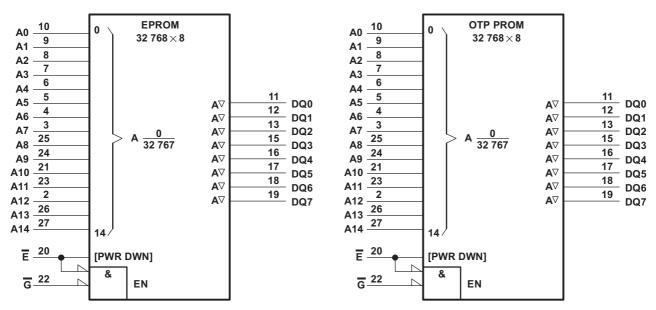



Figure 1. SNAP! Pulse Programming Flowchart

logic symbol[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for J package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC} (see Note 1):	–0.6 V to 7 V
Supply voltage range, V _{PP} :	\ldots –0.6 V to 14 V
Input voltage range (see Note 1): All inputs except A9 :	–0.6 V to V _{CC} + 1 V
A9:	–0.6 V to 13.5 V
Output voltage range (see Note 1):	–0.6 V to V _{CC} + 1 V
Operating free-air temperature range ('27C256JL, '27PC256FML) T _A :	0°C to 70°C
Operating free-air temperature range ('27C5256JE, '27PC256FME) T _A :	–40°C to 85°C
Storage temperature range, T _{stg} :	–65°C to 150°C
3	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

				MIN	NOM	MAX	UNIT
Vee	Supply voltage	Read mo	ode (see Note 2)	4.5	5	5.5	V
Vcc	Supply voltage	SNAP! P	ulse programming algorithm	6.25	6.5	6.75	v
Vpp	Supply voltage	Read mode V		V _{CC} -0.6		V _{CC} +0.6	V
۷PP	Supply voltage	SNAP! P	ulse programming algorithm	12.75	13	13.25	v
VIH	High-level dc input voltage		TTL	2		V _{CC} +1	V
۲IH	nigh-level de input voltage		CMOS	V _{CC} – 0.2		V _{CC} +1	v
VIL	Low-level dc input voltage		TTL	- 0.5		0.8	V
۷IL	Low-level de input voltage		CMOS	- 0.5		0.2	v
Τ _Α	Operating free-air temperature		'27C256JL '27PC256FML	0		70	°C
TA	Operating free-air temperature		'27C256JE '27PC256FME	- 40		85	°C

NOTE 2: V_{CC} must be applied before or at the same time as V_{PP} and removed after or at the same time as V_{PP}. The device must not be inserted into or removed from the board when V_{PP} or V_{CC} is applied.

electrical characteristics over recommended ranges of operating conditions

	PARAMET	ſER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
			I _{OH} = – 2.5 mA	3.5			V
Vон	High-level dc output voltag	Je	I _{OH} = – 20 μA	V _{CC} – 0.1			v
Vai	Low-level dc output voltag	10	I _{OL} = 2.1 mA			0.4	V
VOL	Low-lever ac output voltag	Je	I _{OL} = 20 μA			0.1	v
Ц	Input current (leakage)		$V_{I} = 0 V \text{ to } 5.5 V$			±1	μΑ
lo	Output current (leakage)		$V_{O} = 0 V \text{ to } V_{CC}$			±1	μΑ
IPP1	VPP supply current		V _{PP} = V _{CC} = 5.5 V		1	10	μΑ
IPP2	VPP supply current (durin	g program pulse)	V _{PP} = 13 V		35	50	mA
last	V _{CC} supply current	TTL-input level	$V_{CC} = 5.5 V, \qquad \overline{E} = V_{IH}$		250	500	
ICC1	(standby)	CMOS-input level	$V_{CC} = 5.5 V, \qquad \overline{E} = V_{CC}$		100	250	μA
ICC2	V _{CC} supply current (activ	e)	$V_{CC} = 5.5 V$, $\overline{E} = V_{IL}$, t _{cycle} = minimum cycle time, outputs open		15	30	mA

capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz^{\dagger}

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Ci	Input capacitance	$V_{I} = 0$, $f = 1 \text{ MHz}$		6	10	pF
Co	Output capacitance	V _O = 0, f = 1 MHz		10	14	pF

[†] Capacitance measurements are made on a sample basis only.

[‡] Typical values are at $T_A = 25^{\circ}C$ and nominal voltages.

switching characteristics over recommended range of operating conditions

PARAMETER		TEST CONDITIONS (SEE NOTES 3 AND 4)	^{27C256-10} 27PC256-10		'27C256-12 '27PC256-12		'27C256-15 '27PC256-15		UNIT
		(SEE NOTES SAND 4)	MIN	MAX	MIN	MAX	MIN	MAX	
ta(A)	Access time from address			100		120		150	ns
ta(E)	Access time from chip enable			100		120		150	ns
ten(G)	Output enable time from G	C _L = 100 pF, 1 Series 74 TTL Load,		55		55		75	ns
^t dis	Output disable time from \overline{G} or \overline{E} , whichever occurs first †	Input $t_{f} \le 20$ ns, Input $t_{f} \le 20$ ns	0	45	0	45	0	60	ns
t _{v(A)}	Output data valid time after change of address, E, or G, whichever occurs first [†]		0		0		0		ns

PARAMETER		TEST CONDITIONS (SEE NOTES 3 AND 4)	^{27C256-17} 27PC256-17		'27C256-20 '27PC256-20		'27C256-25 '27PC256-25		UNIT
		(SEE NOTES 5 AND 4)	MIN	MAX	MIN	MAX	MIN	MAX	
^t a(A)	Access time from address			170		200		250	ns
^t a(E)	Access time from chip enable			170		200		250	ns
t _{en(G)}	Output enable time from G	C _L = 100 pF, 1 Series 74 TTL Load,		75		75		100	ns
^t dis	Output disable time from \overline{G} or \overline{E} , whichever occurs first †	Input $t_r \le 20$ ns, Input $t_f \le 20$ ns	0	60	0	60	0	60	ns
^t v(A)	Output data valid time after change of address, E, or G, whichever occurs first [†]		0		0		0		ns

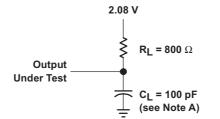
[†] Value calculated from 0.5 V delta to measured level. This parameter is only sampled and not 100% tested.

NOTES: 3. For all switching characteristics the input pulse levels are 0.4 V to 2.4 V. Timing measurements are made at 2 V for logic high and 0.8 V for logic low) (see Figure 2).

4. Common test conditions apply for the t_{dis} except during programming.

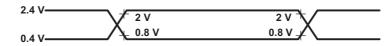
switching characteristics for programming: V_{CC} = 6.50 V and V_{PP} = 13 V (SNAP! Pulse), T_A = 25^oC (see Note 3)

	MIN	MAX	UNIT
t _{dis(G)} Output disable time from G	0	130	ns
t _{en(G)} Output enable time from G		150	ns

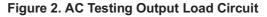

NOTE 3: For all switching characteristics, the input pulse levels are 0.4 V to 2.4 V. Timing measurements are made at 2 V for logic high and 0.8 V for logic low).

timing requirements for programming

		MIN	NOM	MAX	UNIT
^t h(A)	Hold time, address	0			μs
^t h(D)	Hold time, data	2			μs
^t w(IPGM)	Pulse duration, initial program	95	100	105	μs
t _{su(A)}	Setup time, address	2			μs
t _{su(G)}	Setup time, G	2			μs
t _{su(E)}	Setup time, E	2			μs
t _{su(D)}	Setup time, data	2			μs
t _{su(VPP)}	Setup time, VPP	2			μs
t _{su(VCC)}	Setup time, V _{CC}	2			μs



PARAMETER MEASUREMENT INFORMATION



NOTE A: CL includes probe and fixture capacitance.

ac testing input/output wave forms

AC testing inputs are driven at 2.4 V for logic high and 0.4 V for logic low. Timing measurements are made at 2 V for logic high and 0.8 V for logic low for both inputs and outputs.

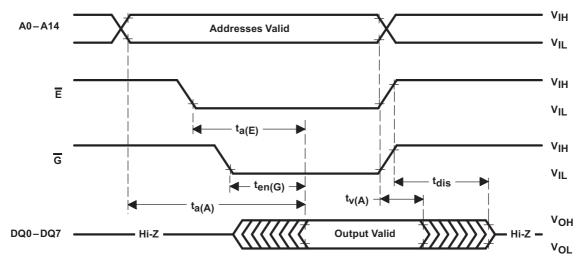
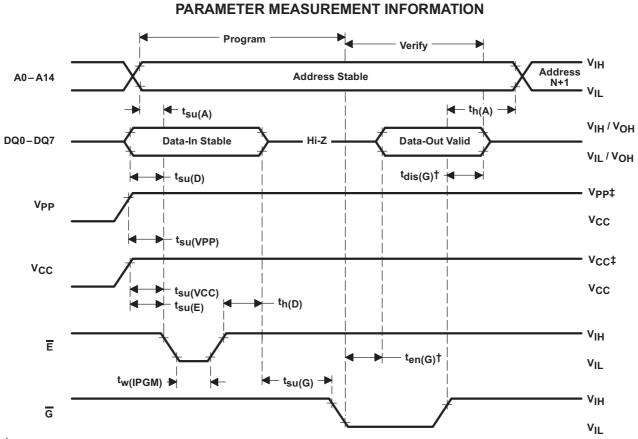
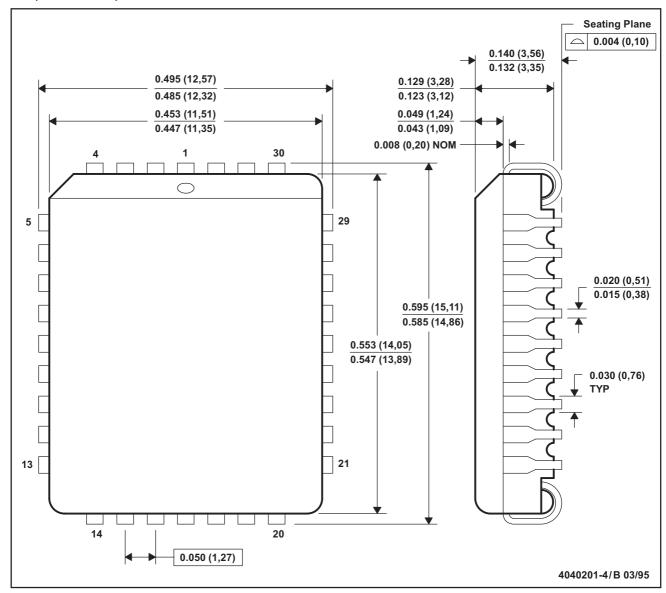



Figure 3. Read-Cycle Timing

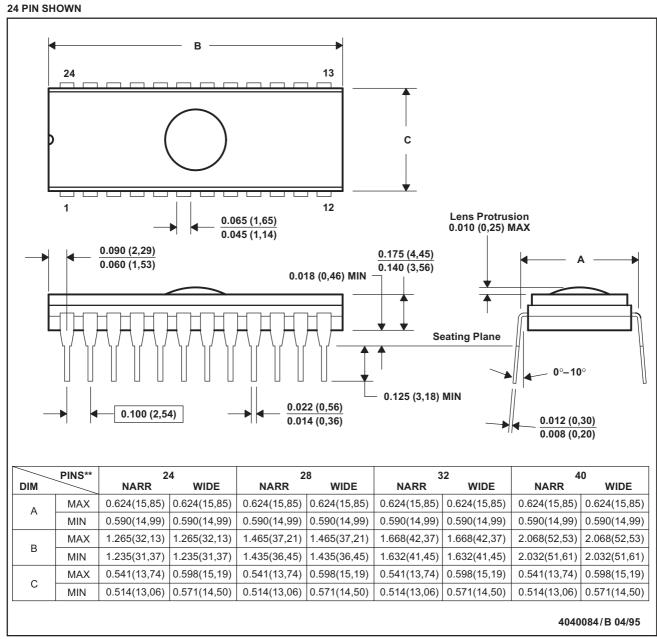


 † t_{dis(G)} and t_{en(G)} are characteristics of the device but must be accommodated by the programmer \ddagger 13-V VpP and 6.5-V V_{CC} for SNAP! Pulse programming

Figure 4. Program-Cycle Timing (SNAP! Pulse Programming)

PLASTIC J-LEADED CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-016

FM (R-PQCC-J32)

J (R-CDIP-T**)

CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated