

DUAL 4-INPUT NAND GATE

DESCRIPTION

The T54LS20/T74LS20 is a high speed DUAL 4-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

Plastic Package

M1 Micro Package Plastic Chip Carrier ORDERING NUMBERS

D1/D2
Ceramic Package

C1 T74LS20 B1

PIN CONNECTION (top view)

DUAL IN LINE
CHIP CARRIER

NC=No Internal Connection

SCHEMATIC

LOGIC DIAGRAM AND TRUTH TABLE

A	B	C	D	Y
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers	Supply Voltage			Temperature
	Min	Typ	Max	
T54LS20D2	4.5 V	5.0 V	5.5 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
T74LS20XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Conditions (Note 1)		Units
			Min.	Typ.	Max.			
$V_{1 H}$	Input HIGH Voltage		2.0			Guaranteed input HIGH Voltage		V
V_{iL}	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage		V
		74			0.8			
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	54	2.5	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$		v
		74	2.7	3.4				
V_{OL}	Output LOW Voltage	54,74		0.25	0.4	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$V_{C C}=\mathrm{MIN}, \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	V
		74		0.35	0.5	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		
I_{H}	Input HIGH Current			1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 V \\ & V_{C C}=M A X, V_{I N}=7.0 V \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / \mathrm{L}$	Input LOW Current				-0.4	$V_{C C}=M A X, V$	$\mathrm{N}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (Note 2)		-20		-100	$V_{C C}=M A X, V$	OUT $=0 \mathrm{~V}$	mA
1 CCH	Supply Current HIGH			0.4	0.8	$V_{C C}=M A X, V$	$\mathrm{N}=0 \mathrm{~V}$	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current LOW			1.2	2.2	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \operatorname{In}$	uts Open	mA

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See page 576 for AC test circuit and waveforms)

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$t_{\text {PLH }}$	Turn Off Delay, Input to Output		9	15		
t $_{\text {PHL }}$	Turn On Delay, Input to Output		10	15	$C_{\mathrm{C}}=15 \mathrm{pF}$	ns

Notes:

1) For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2) Not more than one output should be shorted at a time.
3) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
