
FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC™ (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I $_{\rm OH}$ and I $_{\rm OL}$ of \pm 24 mA at 2.5-V V $_{\rm CC}$

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Latch-Up Performance Exceeds 250 mA Per JESD 78
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

DESCRIPTION

A Dynamic Output Control (DOC^{TM}) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC^{TM}) Circuitry Technology and Applications, literature number SCEA009.

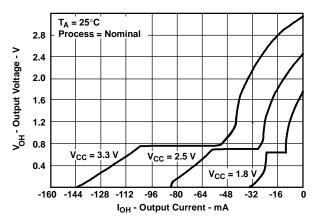


Figure 1. Output Voltage vs Output Current

This 16-bit (dual octal) noninverting bus transceiver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC16245 is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.

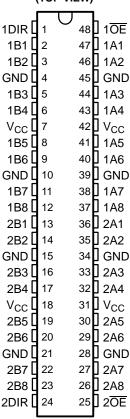
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC, DOC are trademarks of Texas Instruments.

SCES142L-JULY 1998-REVISED MAY 2005

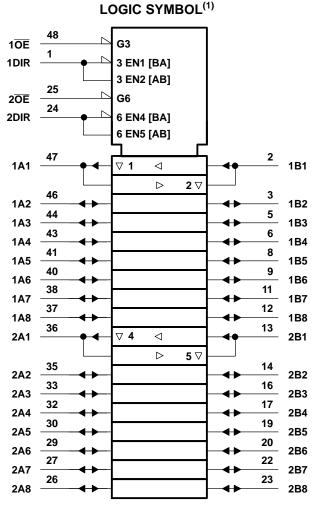
DESCRIPTION (CONTINUED)


To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

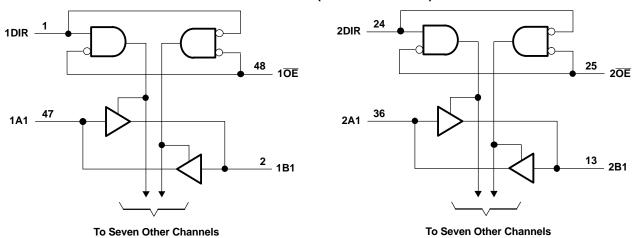
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16245 is characterized for operation from -40°C to 85°C.

TERMINAL ASSIGNMENTS


DGG OR DGV PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH 8-BIT TRANSCEIVER)


INP	UTS	OPERATION
ŌΕ	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Χ	Isolation

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

SN74AVC16245 **16-BIT BUS TRANSCEIVER** WITH 3-STATE OUTPUTS

SCES142L-JULY 1998-REVISED MAY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	Supply voltage range			
V_{I}	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any input/output when the output is in the high-impedance		-0.5	4.6	V
Vo	Voltage range applied to any input/outpu	ut when the output is in the high or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or	GND		±100	mA
•	Dealises the sensel in a dame (4)	DGG package		70	0000
θ_{JA}	Package thermal impedance (4)	DGV package		58	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

The package thermal impedance is calculated in accordance with JESD 51.

SCES142L-JULY 1998-REVISED MAY 2005

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT			
V	Cupply voltage	Operating	1.4	3.6	V			
V_{CC}	Supply voltage	Data retention only	1.2		V			
		V _{CC} = 1.2 V	V _{CC}					
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.65 × V _{CC}					
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7					
		V _{CC} = 3 V to 3.6 V	2					
		V _{CC} = 1.2 V		GND				
		V _{CC} = 1.4 V to 1.6 V		0.35 × V _{CC}				
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}	V			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.7					
		V _{CC} = 3 V to 3.6 V		0.8				
VI	Input voltage		0	3.6	V			
.,	Output valta as	Active state	0	V _{CC}	V			
Vo	Output voltage	3-state	0	3.6	V			
		V _{CC} = 1.4 V to 1.6 V		-2				
	Static high level output ourrent(2)	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	A			
I _{OHS}	Static high-level output current ⁽²⁾	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	mA			
		V _{CC} = 3 V to 3.6 V		-12				
		V _{CC} = 1.4 V to 1.6 V		2				
I _{OLS}	Ctatic law laws and autout aurorat(2)	V _{CC} = 1.65 V to 1.95 V		4	A			
	Static low-level output current ⁽²⁾	V _{CC} = 2.3 V to 2.7 V		8	mA			
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		12				
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V			
T _A	Operating free-air temperature		-40	85	°C			

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ± 24 mA at 2.5-V V_{CC} . See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009.

SCES142L-JULY 1998-REVISED MAY 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

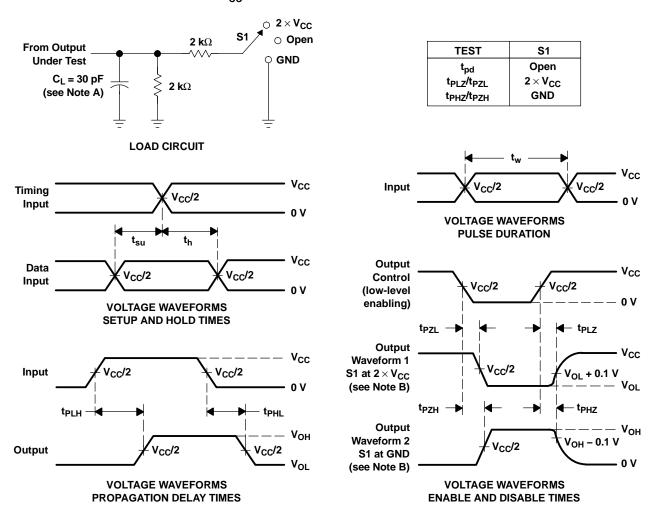
	PARAMETER	TEST	CONDITIONS	V _{cc}	MIN T	YP ⁽¹⁾ MAX	UNIT
		$I_{OHS} = -100 \mu A$		1.4 V to 3.6 V	V _{CC} - 0.2		
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05		
V_{OH}		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2		V
		$I_{OHS} = -8 \text{ mA},$	$V_{IH} = 1.7 \ V$	2.3 V	1.75		
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3		
		$I_{OLS} = 100 \mu\text{A}$		1.4 V to 3.6 V		0.2	
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V		0.4	
V_{OL}		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V		0.45	V
		$I_{OLS} = 8 \text{ mA},$	V _{IL} = 0.7 V	2.3 V		0.55	
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V		0.7	
I _I	Control inputs	$V_I = V_{CC}$ or GND		3.6 V		±2.5	μΑ
I _{off}		$V_{1} \text{ or } V_{O} = 3.6 \text{ V}$		0		±10	μΑ
I _{OZ} ⁽²⁾		$V_O = V_{CC}$ or GND,	$V_{I}(\overline{OE}) = V_{CC}$	3.6 V		±12.5	μΑ
I _{CC}		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V		40	μΑ
^	Control in muto	V V as CND		2.5 V		3	
C _i	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3	pF
_	A an D marte	V V an CND		2.5 V		9	
C _{io}	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		9	pF

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} = ± 0.7		V _{CC} = 0.1		V _{CC} = ± 0.2		V _{CC} = :		UNIT
	(INPOT)	(001F01)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	B or A	3.9	0.8	4	0.7	3	0.6	1.9	0.5	1.7	ns
t _{en}	ŌĒ	A or B	8.4	1.5	9.2	1.4	7	1	4.3	0.7	3.7	ns
t _{dis}	ŌĒ	A or B	8.4	2.3	9.3	2.2	7	1.1	4	1.2	3.9	ns

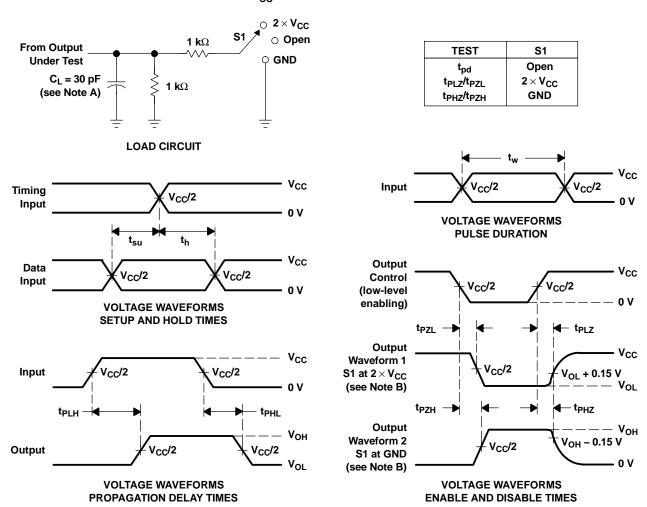
Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
0	Power dissipation	Outputs enabled	C 0 f 10 MHz	35	38	44	"C	
C_{pd}	capacitance	Outputs disabled	$C_L = 0$, $f = 10 \text{ MHz}$	6	6	7	pF	

Typical values are measured at T_A = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current.

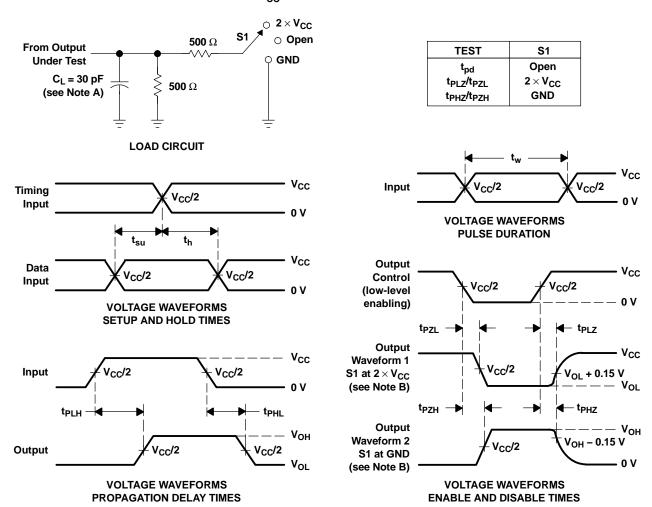
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2 \text{ V}$ AND 1.5 V \pm 0.1 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 2 \ ns$, $t_f \leq 2 \ ns$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

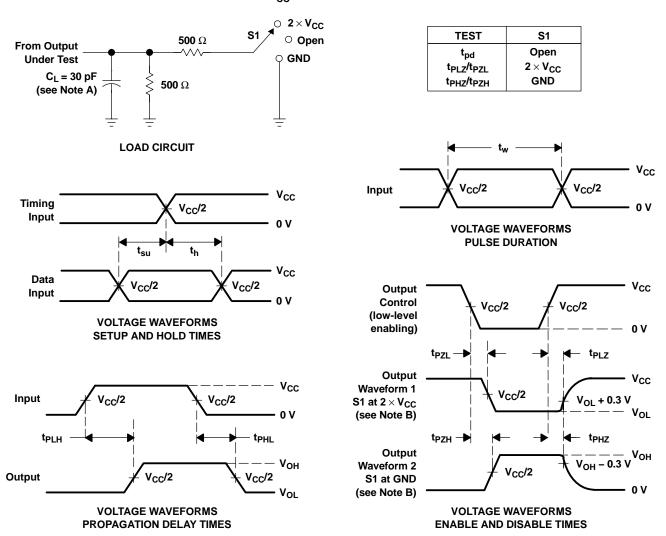
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- NOTES: A. C₁ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 5. Load Circuit and Voltage Waveforms

.com 6-Aug-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74AVC16245DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AVC16245DGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AVC16245DGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AVC16245DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AVC16245DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

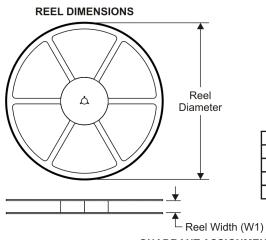
TBD: The Pb-Free/Green conversion plan has not been defined.

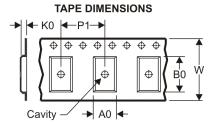
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

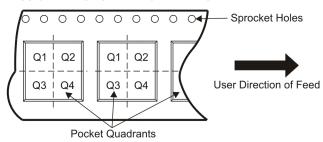
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

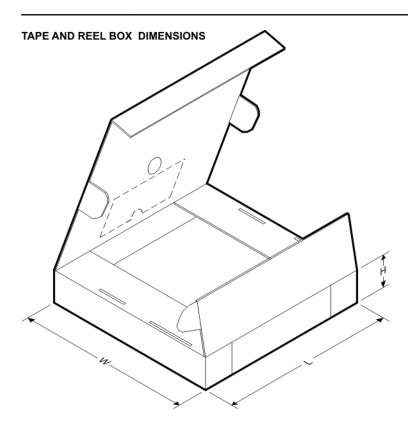

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Aug-2009


TAPE AND REEL INFORMATION

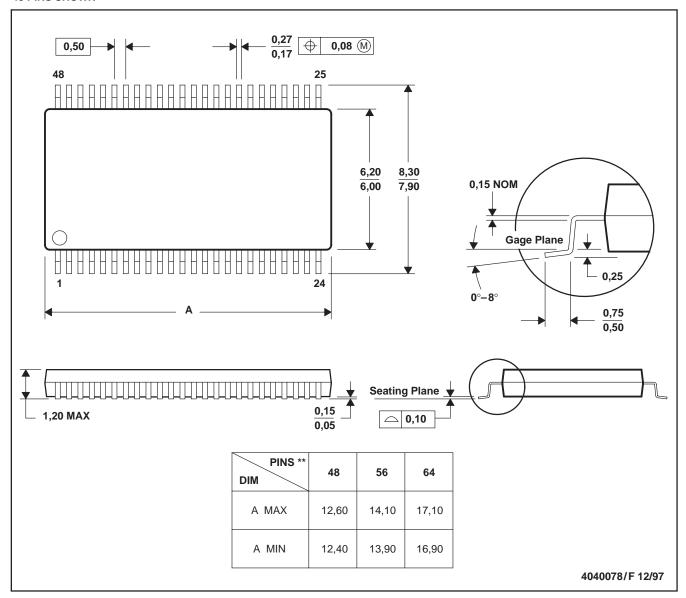
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC16245DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74AVC16245DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

www.ti.com 11-Aug-2009


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC16245DGGR	TSSOP	DGG	48	2000	346.0	346.0	41.0
SN74AVC16245DGVR	TVSOP	DGV	48	2000	346.0	346.0	33.0

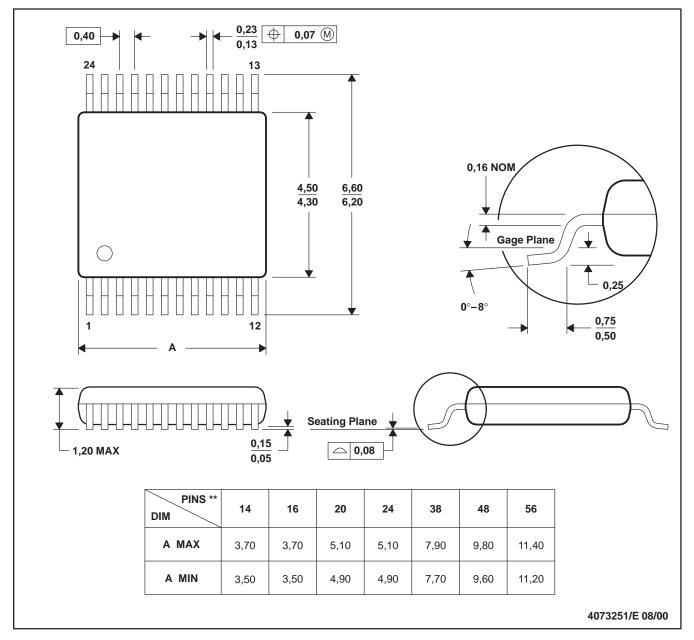
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated