3

Silicon Controlled RectifiersReverse Blocking Triode Thyristors

... designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

- Glass Passivated Junctions and Center Gate Fire for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts

S2800 Series

SCRs 10 AMPERES RMS 50 thru 800 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage, Note 1 Peak Repetitive Off-State Voltage F A S2800 B D M N	VRRM VDRM	50 100 200 400 600 800	Volts
Non-Repetitive Peak Reverse Voltage Non-Repetitive Off-State Voltage F A S2800 B D M N	VRSM VDSM	75 125 250 500 700 900	Volts
RMS Forward Current (All Conduction Angles) TC - 75°C	IT(RMS)	10	Amps
Peak Forward Surge Current (1 Cycle, Sine Wave, 60 Hz, T _C = 80°C)	ITSM	100	Amps
Circuit Fusing Considerations (t = 8.3 ms)	ı2 _t	40	A ² s
Forward Peak Gate Power (t ≤ 10 μs)	PGM	16	Watts
Forward Average Gate Power	PG(AV)	0.5	Watt
Operating Junction Temperature Range	TJ	-40 to +100	°C
Storage Temperature Range	T _{stg}	40 to + 150	С

Note 1. VDRM and VRRM for all types can be applied on a continuous dc basis without incurring damage. Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias applied to the gate concurrently with a negative potential on the anode.

S2800 Series

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	ReJC	2	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current (Rated V _{DRM} or V _{RRM}) T _C = 25°C T _C = 100°C	DRM, RRM	_	_	10 2	μΑ mA
Instantaneous On-State Voltage (I _{TM} = 30 A Peak, Pulse Width ≤ 1 ms, Duty Cycle ≤ 2%)	VT	_	1.7	2	Volts
Gate Trigger Current (Continuous dc) (V _D = 12 Vdc, R _L = 30 Ohms)	lGT .		8	15	mA
Gate Trigger Voltage (Continuous dc) (V _D = 12 Vdc, R _L = 30 Ohms)	VGT	-	0.9	1.5	Volts
Holding Current (Gate Open, V _D = 12 Vdc, I _T = 150 mA)	ίн		10	20	mA
Gate Controlled Turn-on Time (V _D = Rated V _{DRM} , I _{TM} = 2 A, I _{GR} = 80 mA)	^t gt		1.6	-	μς
Circuit Commutated Turn-Off Time (VD = VDRM, ITM = 2 A, Pulse Width = 50 μ s, dv/dt = 200 V/ μ s, di/dt = 10 A/ μ s, TC = 75°C)	tq	_	25	_	μs
Critical Rate-of-Rise of Off-State Voltage (VD = Rated VDRM, Exponential Rise, TC = 100°C)	dv/dt		100	_	V/μs

FIGURE 1 - CURRENT DERATING

FIGURE 2 - POWER DISSIPATION

