

REF12Z/REF12D

1.26V MICROPOWER PRECISION REFERENCE

The REF12Z and REF12D are integrated circuits using the bandgap principle to provide a precise stable reference voltage of 1.26V. There are two package options available: REF12Z in a plastic 3-pin TO-92 and REF12D in a miniature surface mount package (MP8).

These references feature a recommended operating current of 90µA to 2.5mA which make them ideal for all low power and battery applications.

FEATURES

- Low Knee Current typically 80 microamps
- Ideal for Battery Operation 113 microwatts
- REF12Z 3 lead TO-92 Plastic Package
- REF12D Miniature Plastic Surface Mount Package (MP8)
- Tight Initial V_{REF} Tolerance ±1%
- Low Temperature Coefficient
- Low Slope Resistance
- Low Cost
- Operation over Industrial Temperature Range

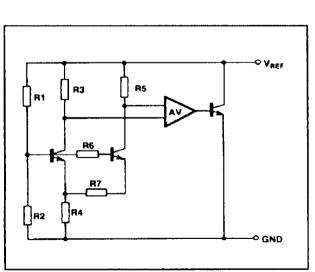


Fig.2 Internal connections

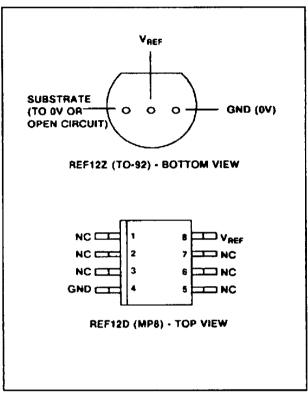


Fig. 1 Pin connection

ORDERING INFORMATION

Device Type	Operating Temperature	Package
REF12Z	-40°C to +85°C	TO-92
REF12D	-40°C to +85°C	MP8

ABSOLUTE MAXIMUM RATINGS

Reference current	2.5m A				
Operating temperature range:					
REF12Z	-40 to +85°C				
REF12D	-40 to +85°C				
Storage temperature	-55 to +125°C				
Storage temperature for a max, time of 10ns:					
within 1.59mm of the seating plane	300°C				
within 0.80mm of the seating plane	265°C				

REF12Z/12D

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions (unless otherwise stated) $T_{amb} = 25 \, ^{\circ}\text{C}$, $C_s = 470 \, \text{nF}$ (see Fig.3)

Characteristic	Symbol	Value			Units	Conditions
		Min.	Тур.	Max.		
Output voltage Slope resistance (Note 1)	V _{ree} R _{ree}	1.247	1.26 2.5	1.273 4.0	V Ω	I _{REF} = 150μA to 2.5mA Note 1
Turn-on (knee) current Recommended operating current range	l _{on} I _{ref}	0.09	80	90 2.5	μA m A	
Temperature coefficient (Note 2) RMS noise voltage Turn-on time	TC V _{REF}		40 30 1.0 0.4	80 80	ppm/°C ppm/°C μV/√Hz ms	REF12Z Note 2 REF12D Note 2 0.1Hz to 25kHz
Turn-off time Turn-on time Turn-off time	T _{OFF} T _{ON} T _{OFF}		15 5 110		ms ms ms	} I _{REF} = 1.5mA } I _{REF} = 1.5mA

NOTES

1. Slope resistance (R_{BEF})

Slope resistance is defined as

 R_{REF} = Change in V_{REF} over a specified current range

The change in reference current

2. Reference voltage temperature coefficient (TC V_{REF})

This is the normalised reference voltage change over temperature, divided by the change in temperature. It is expressed in ppm/°C

$$TC V_{REF} = \frac{\Delta V_{REF} \times 10^6}{V_{REF} \times \Delta T} ppm/^{\circ}C$$

 ΔT = temperature change in °C

 ΔV_{BFF} = change in reference voltage over temperature change ΔT

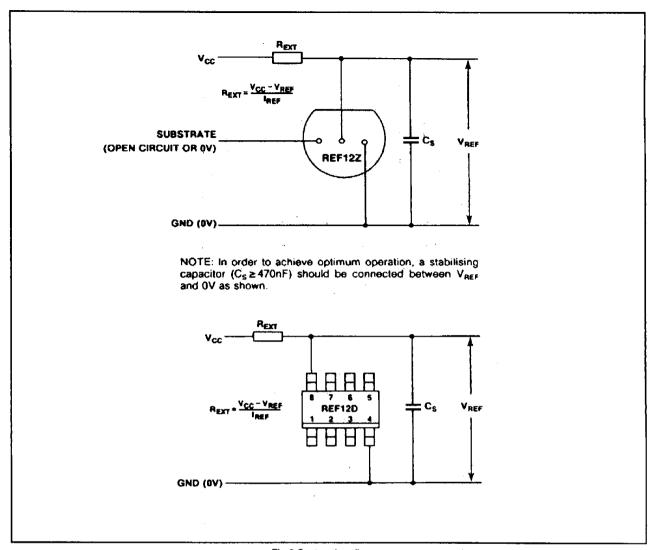


Fig.3 Connection diagram

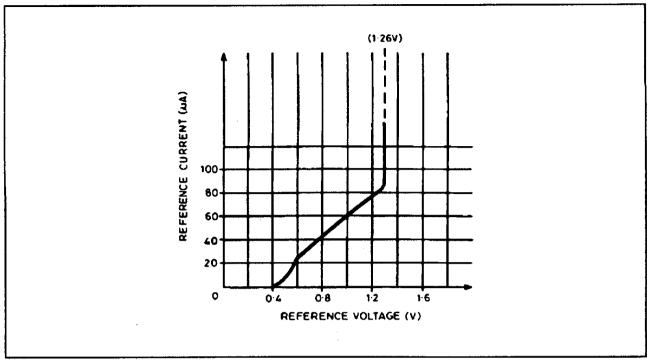


Fig.4 Typical reference characterics

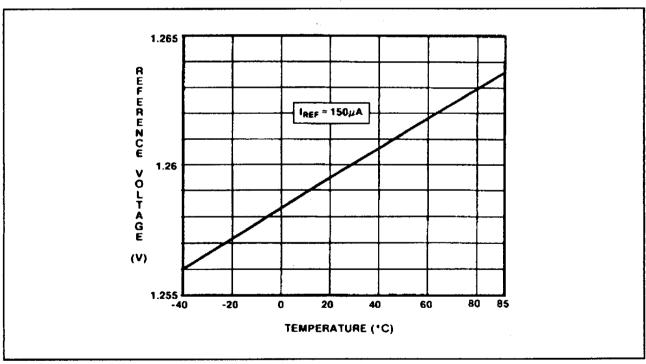


Fig.5 Typical temperature characteristic

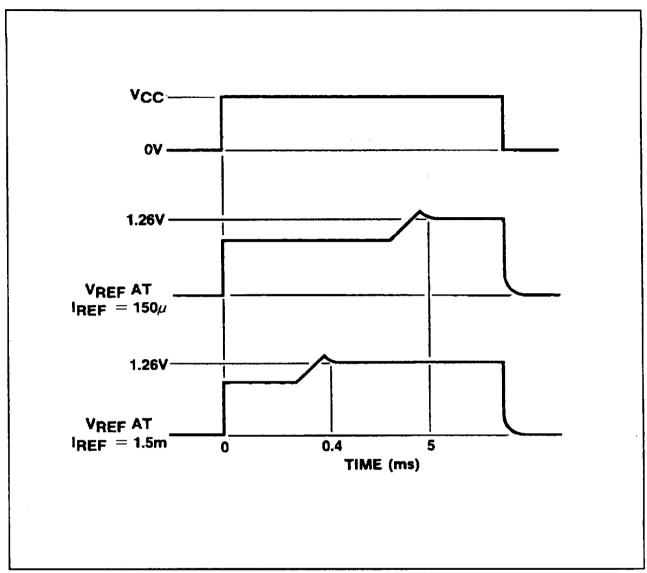


Fig.6 Typical response time

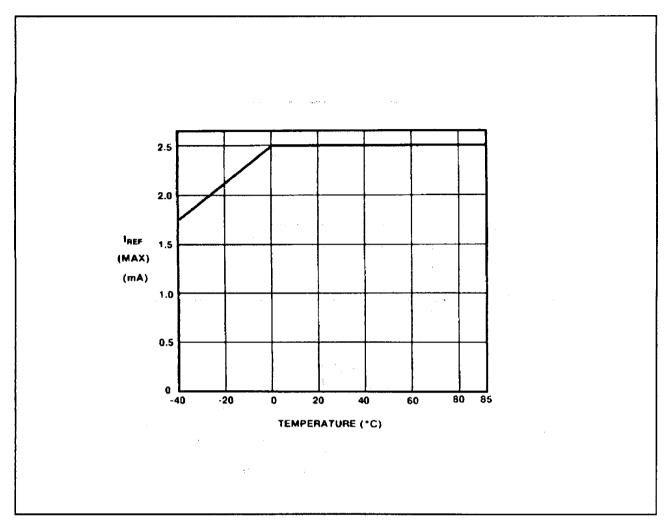


Fig. 7 Typical derating curve