RICOH # **R1114x SERIES** ### **LOW NOISE 150mA LDO REGULATOR** NO.EA-094-111026 #### OUTLINE The R1114x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1114x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment. The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are SOT-23-5, SC-82AB, and SON1612-6 therefore high density mounting of the ICs on boards is possible. ### **FEATURES** | Supply Current Standby Mode | | |--|--| | Dropout Voltage | | | Ripple Rejection | | | | Typ. 60dB (f=10kHz) | | Temperature-Drift Coefficient of Output Voltage | Typ. ±100ppm/°C | | Line Regulation | Typ. 0.02%/V | | Output Voltage Range | 1.5V to 4.0V (0.1V steps) | | | (For other voltages, please refer to MARK INFORMATIONS.) | | Output Voltage Accuracy | ±2.0% | | Packages | SON1612-6, SC-82AB, SOT-23-5 | | Built-in Fold Back Protection Circuit | Typ. 40mA (Current at short mode) | | Ceramic capacitors are recommended to be used with this IC | C C _{IN} =C _{OUT} =1μF (V _{OUT} <2.5V) | | | $C_{\text{IN}}=1\mu\text{F},~C_{\text{OUT}}=0.47\mu\text{F}~(V_{\text{OUT}}\geqq2.5V)$ | ### **APPLICATIONS** - Power source for portable communication equipment. - Power source for electrical appliances such as cameras, VCRs and camcorders. - · Power source for battery-powered equipment. # **BLOCK DIAGRAMS** # **SELECTION GUIDE** The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request. | Product Name | Package | Quantity per Reel | Pb Free | Halogen Free | |------------------|-----------|-------------------|---------|--------------| | R1114Dxx1*-TR-FE | SON1612-6 | 4,000 pcs | Yes | Yes | | R1114Qxx1*-TR-FE | SC-82AB | 3,000 pcs | Yes | Yes | | R1114Nxx1*-TR-FE | SOT-23-5 | 3,000 pcs | Yes | Yes | xx: The output voltage can be designated in the range from 1.5V(15) to 4.0V(40) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.) - * : CE pin polarity and auto discharge function at off state are options as follows. - (A) "L" active, without auto discharge function at off state - (B) "H" active, without auto discharge function at off state - (D) "H" active, with auto discharge function at off state # **PIN CONFIGURATION** # • SON1612-6 # **PIN DESCRIPTIONS** # • R1114D | Pin No. | Symbol | Description | | |---------|-----------------|-----------------|--| | 1 | V _{DD} | Input Pin | | | 2 | GND | Ground Pin | | | 3 | Vоит | Output pin | | | 4 | NC | No Connection | | | 5 | GND | Ground Pin | | | 6 | CE or CE | Chip Enable Pin | | ### • R1114Q | Pin No. | Symbol | Description | | |---------|-----------------|-----------------|--| | 1 | CE or CE | Chip Enable Pin | | | 2 | GND | Ground Pin | | | 3 | Vоит | Output pin | | | 4 | V _{DD} | Input Pin | | # • R1114N | Pin No. | Symbol | Description | | |---------|-----------------|-----------------|--| | 1 | V _{DD} | Input Pin | | | 2 | GND | Ground Pin | | | 3 | CE or CE | Chip Enable Pin | | | 4 | NC | No Connection | | | 5 | Vоит | Output pin | | ### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Item | Rating | Unit | |--------|--------------------------------|---------------|------| | Vin | Input Voltage | 6.5 | V | | Vce | Input Voltage (CE or CE Pin) | 6.5 | V | | Vоит | Output Voltage | -0.3~Vın+0.3 | V | | louт | Output Current | 200 | mA | | | Power Dissipation (SON1612-6)* | 500 | | | PD | Power Dissipation (SC-82AB)* | 380 | mW | | | Power Dissipation (SOT-23-5)* | 420 | | | Topt | Operating Temperature Range | −40~85 | °C | | Tstg | Storage Temperature Range | -55~125 | °C | ^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION. #### **ABSOLUTE MAXIMUM RATINGS** Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. #### RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. # **ELECTRICAL CHARACTERISTICS** # • R1114xxx1A Topt=25°C | Symbol | ltem | Conditions | Min. | Тур. | Max. | Unit | |-------------------------------|---|---|---------|----------|--------|------------| | Vоит | Output Voltage | V _{IN} = Set V _{OUT} +1V
1mA ≤ I _{OUT} ≤ 30mA | ×0.980 | | ×1.020 | ٧ | | І оит | Output Current | Vin-Vout = 1.0V | 150 | | | mA | | Δ V ουτ/Δ I ουτ | Load Regulation | V _{IN} = Set V _{OUT} +1V
1mA ≦ I _{OUT} ≦ 150mA | | 22 | 40 | mV | | VDIF | Dropout Voltage | Refer to the ELECTRICAL CHARA VOLTAGE | ACTERIS | STICS by | OUTPU | Т | | Iss | Supply Current | VIN = Set Vour+1V, lour = 0mA | | 75 | 95 | μA | | Istandby | Supply Current
(Standby) | VIN = Set Vout+1V
VCE = VDD | | 0.1 | 1.0 | μА | | ΔVουτ/ΔVιν | Line Regulation | $\begin{tabular}{ll} V_{\text{OUT}} > 1.7V, \\ \text{Set } V_{\text{OUT}} + 0.5V \le V_{\text{IN}} \le 6.0V \\ (V_{\text{OUT}} \le 1.7V, 2.2V \le V_{\text{IN}} \le 6.0V) \\ I_{\text{OUT}} = 30\text{mA} \\ \end{tabular}$ | | 0.02 | 0.10 | %/V | | RR | Ripple Rejection | | | 70
60 | | dB | | Vin | Input Voltage | | 2.0 | | 6.0 | V | | ΔVουτ/
ΔTopt | Output Voltage
Temperature Coefficient | I _{OUT} = 30mA
-40°C ≦ Topt ≦ 85°C | | ±100 | | ppm
/°C | | lsc | Short Current Limit | Vout = 0V | | 40 | | mA | | Rpu | CE Pull-up Resistance | | 0.7 | 2.0 | 8.0 | МΩ | | Vceh | CE Input Voltage "H" | | 1.5 | | 6.0 | V | | Vcel | CE Input Voltage "L" | | 0.0 | | 0.3 | V | | en | Output Noise | BW = 10Hz to 100kHz | | 30 | | μVrms | # • R1114xxx1B/D Topt=25°C | Symbol | Item | Conditions | Min. | Тур. | Max. | Unit | |-------------------------------|--|--|--------|----------|--------|------------| | Vоит | Output Voltage | V _{IN} = Set V _{OUT} +1V
1mA ≦ I _{OUT} ≦ 30mA | ×0.980 | | ×1.020 | ٧ | | І оит | Output Current | VIN-VOUT = 1.0V | 150 | | | mA | | Δ V ουτ/Δ I ουτ | Load Regulation | V _{IN} = Set V _{OUT} +1V
1mA ≤ I _{OUT} ≤ 150mA | | 22 | 40 | mV | | VDIF | Dropout Voltage | Refer to the ELECTRICAL CHAR VOLTAGE | RACTER | ISTICS E | y OUTP | UT | | Iss | Supply Current | VIN = Set VOUT+1V, IOUT = 0mA | | 75 | 95 | μΑ | | Istandby | Supply Current (Standby) | V _{IN} = Set V _{OUT} +1V
V _{CE} = GND | | 0.1 | 1.0 | μ A | | ΔVουτ/ΔVιν | Line Regulation | Vout > 1.7V,
Set Vout+0.5V \leq Vin \leq 6.0V
(Vout \leq 1.7V, 2.2V \leq
Vin \leq 6.0V) lout = 30mA | | 0.02 | 0.10 | %/V | | RR | Ripple Rejection | | | 70
60 | | dB | | Vin | Input Voltage | | 2.0 | | 6.0 | V | | ΔVουτ/
ΔTopt | Output Voltage
Temperature Coefficient | louτ = 30mA
-40°C ≦ Topt ≦ 85°C | | ±100 | | ppm
/°C | | Isc | Short Current Limit | Vout = 0V | | 40 | | mA | | R _{PD} | CE Pull-down Resistance | | 0.7 | 2.0 | 8.0 | MΩ | | Vceh | CE Input Voltage "H" | | 1.5 | | 6.0 | ٧ | | Vcel | CE Input Voltage "L" | | 0.0 | | 0.3 | V | | en | Output Noise | BW = 10Hz to 100kHz | | 30 | | μVrms | | RLOW | On Resistance of Nch for auto-discharge (Only for D version) | Vce = 0V | | 60 | | Ω | #### ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE Topt = 25°C | | Dropout Voltage | | | |-------------------------|-----------------|------|------| | Output Voltage Vоит (V) | VDIF (V) | | | | | Condition | Тур. | Max. | | Vоит = 1.5 | louт = 150mA | 0.38 | 0.70 | | Vоит = 1.6 | | 0.36 | 0.65 | | Vout = 1.7 | | 0.34 | 0.60 | | 1.8 ≦ Vouт ≦ 2.0 | | 0.32 | 0.55 | | 2.1 ≦ Vouт ≦ 2.7 | | 0.28 | 0.50 | | 2.8 ≦ Vouт ≦ 4.0 | | 0.22 | 0.35 | #### **TECHNICAL NOTES** When using these ICs, consider the following points: #### Phase Compensation In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.) #### **PCB** Layout Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins. Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible. # **TEST CIRCUITS** Fig.1 Standard test Circuit Fig.2 Supply Current Test Circuit Fig.3 Ripple Rejection, Line Transient Response Test Circuit Fig.4 Load Transient Response Test Circuit # **TYPICAL APPLICATIONS** (External Components) Output Capacitor; Ceramic 0.47μF (Set Output Voltage in the range from 2.5 to 4.0V) Ceramic $1.0\mu F$ (Set Output Voltage in the range from 1.5 to 2.4V) Input Capacitor; Ceramic 1.0μF # **TYPICAL CHARACTERISTICS** 1) Output Voltage vs. Output Current (Topt=25°C) # 2) Output Voltage vs. Input Voltage (Topt=25°C) # 3) Supply Current vs. Input Voltage (Topt=25°C) # R1114x ### 4) Output Voltage vs. Temperature #### 5) Supply Current vs. Temperature # 6) Dropout Voltage vs. Temperature 7) Dropout Voltage vs. Set Output Voltage (Topt=25°C) 8) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, C_{IN}=none, C_{OUT}=ceramic0.47μF) # R1114x # 9) Ripple Rejection vs. Frequency (Cin=none) 10) Input Transient Response (Iou τ =30mA, CiN=none, tr=tf=5 μ s, Cou τ =Ceramic 0.47 μ F) # 11) Load Transient Response (tr=tf=0.5 μ s, C_{IN}=Ceramic 1.0 μ F) ### 12) Turn-on/off speed with CE pin (D version) # R1114x401D (Vin=5.0V, Cin=Ceramic 0.47μF, Couτ=Ceramic 0.47μF) # **ESR vs. Output Current** When using these ICs, consider the following points: In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows: Measuring Circuit for white noise; R1114xxx1B/D The relations between lout (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph. (Note: If additional ceramic capacitors are connected to the Output Pin with Output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.) #### <Measurement conditions> (1) $V_{IN}=V_{OUT}+1V$ (2) Frequency Band: 10Hz to 2MHz (3) Temperature: -40°C to 25°C # R1114x - 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. - 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. - Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. - 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. - 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. - 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. - 7. Anti-radiation design is not implemented in the products described in this document. - 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. # RICOH RICOH ELECTRONIC DEVICES CO., LTD. #### http://www.e-devices.ricoh.co.jp/en/ Sales & Support Offices RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: #81-3-5479-92857 Fax: #81-3-5479-95502 RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309 RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Heesung Bidg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713 RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 RICOH ELECTRONIC DEVICES CO., LTD. Talpel office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623