PQ1Uxx1M2ZP Series

Low Output Current, Compact Surface Mount Type Low Power-Loss Voltage Regulators

Features

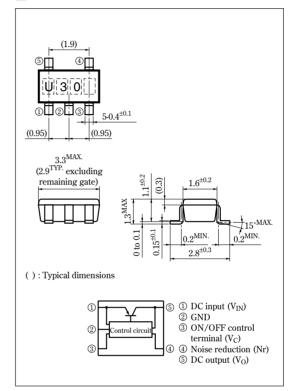
- Compact surface mount package (2.9×1.6×1.1mm)
- Low power-loss (Dropout voltage: TYP. 0.11 V at Io=60mA)
- High ripple rejection (TYP. 70dB)
- Built-in ON/OFF control function (Dissipation current at OFF-state: MAX. 1μA)
- Built-in overcurrent, overheat protection functions
- *It is available for every 0.1V of output voltage (1.3V to 5.0V)

Applications

- Cellular phones
- Cordless phones
- Personal information tools (PDA)
- Cameras/Camcoders
- PCMCIA cards for notebook PCs

■ Model Line-up

Output Voltage (TYP.)	Model No.	Output Voltage (TYP.)	Model No.
2.5V	PQ1U251M2ZP	3.5V	PQ1U351M2ZP
2.8V	PQ1U281M2ZP	3.6V	PQ1U361M2ZP
3.0V	PQ1U301M2ZP	3.8V	PQ1U381M2ZP
3.3V	PQ1U331M2ZP	4.0V	PQ1U401M2ZP
3.4V	PQ1U341M2ZP	5.0V	PQ1U501M2ZP


■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
*1Input voltage	$V_{\rm IN}$	16	V
*1 ON/OFF control terminal voltage	Vc	16	V
Output current	Io	300	mA
*2Power dissipation	PD	350	mW
*3 Junction temperature	Tj	150	°C
Operating temperature	Topr	-30 to +80	°C
Storage temperature	Tstg	-55 to +150	°C
Soldering temperature	Tsol	260 (10s)	°C

^{*1} All are open except GND and applicable terminals.

Outline Dimensions

SHADD

^{*}2 At mounted on PCB

^{#3} Overheat protection may operate at Tj=125°C to 150°C

[·] Please refer to the chapter " Handling Precautions ".

Electrical Characteristics

(Unless otherwise specified, V_{IN}=V_O(TYP)+1.0V, I_O=30mA, V_C=1.8V, T_a=25°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	Vo	_	Refer to the following table.1		V	
*4Output peak current	Iop	_	- 180 300 -		-	mA
Recommended output current	_	_	_	_	150	mA
	RegL1	Io=5 to 60mA		10	50	mV
Load regulation	RegL2	Io=5 to 100mA	_	20	100	mV
	RegL3	Io=5 to 150mA	_	30	160	mV
Line regulation	RegI	$V_{IN}=V_O(TYP)+1V$ to $V_O(TYP)+6V$ - 3.0		20	mV	
Temperature coefficient of output voltage	TcVo	Io=10mA, T _j =-25 to +75°C	_	0.05	_	mV/°C
Ripple rejection	RR	RR Refer to Fig.2		70	-	dB
Output noise voltage	V _{no (rms)}	10Hz <f<100khz, c<sub="">n=0.1μF, Io=30mA</f<100khz,>	Refer to the following table.2		μV	
Duranteraltana	V _I -o1	Io=60mA *5	- 0.11 0.26		0.26	
Dropout voltage	V _{I-0} 2	Io=150mA*5	- 0.20 0.4		V	
*6ON-state voltage for control	Vc (ON)	_	1.8	_	-	V
ON-state current for control	Ic (on)	Vc=1.8V	_	5	30	μΑ
OFF-state voltage for control Vc (OFF		_	_	_	0.4	V
Quiescent current		Io=0mA	_	130	200	μΑ
Output OFF-state dissipation current	Iqs	Vc=0.2V - 1		1	μΑ	

^{#4} Output current shall be the value when output voltage lowers 0.3V from the voltage at Io=30mA.

Table.1 Output Voltage Line-up

(V_{IN}=V_O(TYP)+1.0V, I_O=30mA, V_C=1.8V, Ta=25°C)

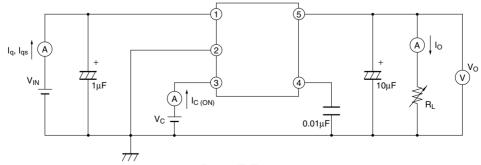

Model No.	Symbol	MIN.	TYP.	MAX.	Unit
PQ1U181M2ZP		1.740	1.8	1.860	
PQ1U251M2ZP		2.440	2.5	2.560	
PQ1U281M2ZP		2.740	2.8	2.860	
PQ1U291M2ZP		2.840	2.9	2.960	
PQ1U301M2ZP		2.940	3.0	3.060	
PQ1U331M2ZP	Vo	3.234	3.3	3.366	V
PQ1U341M2ZP		3.332	3.4	3.468	v
PQ1U351M2ZP		3.430	3.5	3.570	
PQ1U361M2ZP		3.528	3.6	3.672	
PQ1U381M2ZP		3.724	3.8	3.876	
PQ1U401M2ZP		3.920	4.0	4.080	
PQ1U501M2ZP		4.900	5.0	5.100	

Table.2 Output Noise Voltage Line-up

 $(V_{IN}=V_O(TYP)+1.0V, I_O=30mA, V_C=1.8V, C_n=0.1\mu F, 10Hz < f < 100kHz, Ta=25°C)$

Model No.	Symbol	MIN.	TYP.	MAX.	Unit
PQ1U181M2ZP		_	15	_	
PQ1U251M2ZP		_	25	_	
PQ1U281M2ZP		-	25	-	
PQ1U291M2ZP		-	25	_	
PQ1U301M2ZP	Vno(rms)	_	30	_	
PQ1U331M2ZP		_	30	_	
PQ1U341M2ZP		_	30	-	μV
PQ1U351M2ZP		-	35	_	
PQ1U361M2ZP		-	35	_	
PQ1U381M2ZP		_	35	-	
PQ1U401M2ZP		_	40	_	
PQ1U501M2ZP		_	50	_	

Fig.1 Test Circuit

^{#5} Input voltage when output voltage falls 0.1V from that at Vin=Vo(TYP)+1.0V.

^{#6} In case that the control terminal (③ pin) is open, output voltage should be OFF state.

^{#7} In case of PQ1U181M2ZP, V_{IN} minimum=2.3V.

Fig.2 Test Circuit for Ripple Rejection

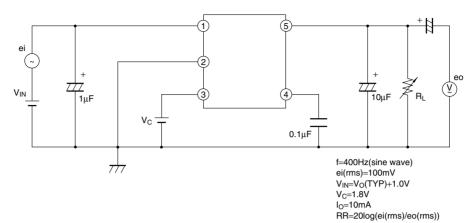
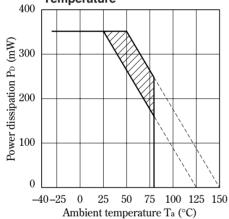



Fig.3 Power Dissipation vs. Ambient Temperature

Note) Oblique line portion: Overheat protection may operate in this area.

Fig.5 Output Voltage Fluctuation vs. Junction Temperature (PQ1U281M2ZP)(Typical Value)

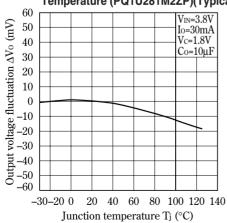


Fig.4 Overcurrent Protection Characteristics (Typical Value)

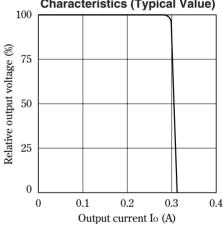


Fig.6 Output Voltage vs. Input Voltage (PQ1U281M2ZP)(Typical Value)

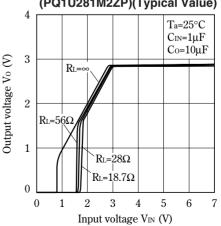


Fig.7 Circuit Operating Current vs. Input Voltage Fig.8 (PQ1U281M2ZP)(Typical Value)

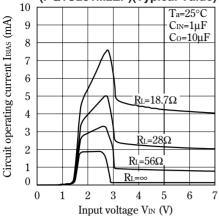


Fig.9 Quiescent Current vs. Junction Temperature (Typical Value)

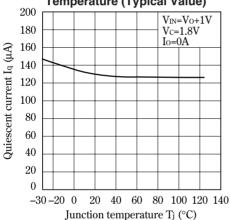
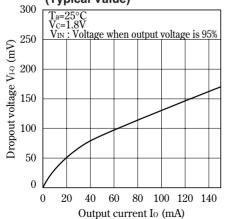



Fig.11 Dropout Voltage vs. Output Current (Typical Value)

Dropout Voltage vs. Junction Temperature (PQ1U281M2ZP)(Typical Value)

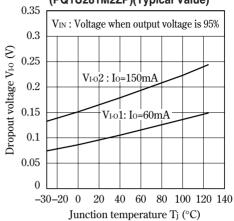
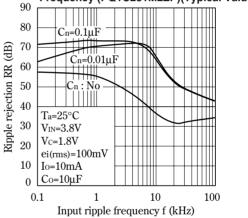



Fig.10 Ripple Rejection vs. Input Ripple Frequency (PQ1U281M2ZP)(Typical Value)

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.