
# 15–18 W DC/DC Power Modules 48 V Input Series

- Regulated single, dual and triple outputs
- Low profile 10.7 mm (0.42 in.), allows 0.8 in. board pitch – 0.6 in. if recessed in the printed board
- Proven MTBF >2,000,000 hours at +75 °C case temperature and a rugged mechanical construction
- Efficiency 85% typ, at full load.
   No extra heatsink up to +85°C ambient. Max. +115°C case
- Low EMI in conformance with class A in EN 55022 and FCC part 15J





The 15–18 watts PKC series DC/DC power modules are especially designed for decentralized –48 and –60 Vdc systems with distributed on-board DC/DC converters. Their low profile allows very narrow board pitches and slim designs. By using thickfilm technology, which provides a high degree of integration as well as efficient thermal management, and by utilizing a 300 kHz switching frequency based on proprietary drive & control circuits, these highly reliable products can be used in demanding Information Technology and Telecom (IT&T) applications e.g. computers, cellular radio, and telecom switching. By using magnetic integration of the output voltages in the feedback loop, all outputs are kept within a ±3% total tolerance band. Input to output



isolation is 500 Vdc and mechanical ruggedness – specified in conformance with IEC 68-2 – is close to requirements for discrete components. Extreme temperature conditions can be met since the PKC power modules can operate with full output power in ambient temperatures from –45 to +85°C, or up to +115°C case temperature also making the products ideal for applications within not temperature controlled environments.

The PKC series are manufactured using highly automated manufacturing lines with a world-class quality commitment and a five-year warranty. Ericsson Microelectronics AB has been an ISO 9001 certified supplier since 1991. For a complete product program please reference the back cover.



## General

### **Absolute Maximum Ratings**

| Charact          | eristics                             | min | max  | Unit |
|------------------|--------------------------------------|-----|------|------|
| T <sub>C</sub>   | Case temperature <sup>1)</sup>       | -45 | +115 | °C   |
| T <sub>S</sub>   | Storage temperature                  | -55 | +125 | °C   |
| Vi               | Input voltage -0.5 72                |     |      |      |
| V <sub>ISO</sub> | Input to output isolation            | 500 |      | Vdc  |
| W <sub>tr</sub>  | Transient input energy <sup>2)</sup> |     | 0.6  | Ws   |
| V <sub>RC</sub>  | Remote control voltage pin 1         | 0   | 5    | Vdc  |

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Input T<sub>C</sub> < T<sub>Cmax</sub> unless otherwise specified

| Charac             | teristics                            | Conditions                                                              | min | typ | max | Unit |
|--------------------|--------------------------------------|-------------------------------------------------------------------------|-----|-----|-----|------|
| VI                 | Input voltage range <sup>3)</sup>    |                                                                         | 18  |     | 72  | V    |
| V <sub>Ioff</sub>  | Turn-off input voltage               | (See Operating Information)                                             | 28  |     | 35  | V    |
| V <sub>Ion</sub>   | Turn-on input voltage                | (See Operating Information)                                             | 29  |     | 36  | ٧    |
| r <sub>irush</sub> | Equivalent inrush current resistance |                                                                         |     | 1   |     | Ω    |
| Cı                 | Input capacitance                    |                                                                         |     | 1.0 |     | μF   |
| Pli                | Input idling power                   | I <sub>O</sub> = 0, T <sub>C</sub> = 0+95 °C                            |     | 2   |     | w    |
| P <sub>RC</sub>    | Input stand-by power                 | $V_I = 53V$ , $I_O = 0$ ,<br>$T_C = 0 +95$ °C,<br>RC connected to pin 3 |     | 0.6 |     | W    |

#### Notes:

- $^{1)}$  Corresponding ambient temp. range (TA) at full output power is -45 to  $+85\ ^{\circ}\text{C}.$
- 2) P<0.6 kW,  $t_r/t_d = 10/1000$  ms,  $I_1 < 8$  A. Transient supressor threshold voltage is 76 V typ.
- 3) The converters will operate down to  $V_i \le 35V$ , when  $V_i$  decreases, but will turn on at  $V_i \le 36V$ , when  $V_i$  increases (see also Operating information).

#### **Environmental Characteristics**

| Characteristics           | Test procedure & co                 | onditions                                             |                                                |
|---------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------------------|
| Vibration<br>(Sinusoidal) | IEC 68-2-6 F <sub>c</sub>           | Frequency Amplitude Acceleration Number of cycles     | 10500 Hz<br>0.75 mm<br>10 g<br>10 in each axis |
| Shock<br>(Half sinus)     | IEC 68-2-27 E <sub>a</sub>          | Peak acceleration<br>Shock duration                   | 200 g<br>3 ms                                  |
| Bump<br>(Half sinus)      | IEC 68-2-29 E <sub>b</sub>          | Peak acceleration<br>Bump duration<br>Number of bumps | 40 g<br>6 ms<br>1000 in 6 directions           |
| Temperature change        | IEC 68-2-14 N <sub>a</sub>          | Temperature<br>Number of cycles                       | -40°C+125°C<br>10                              |
| Damp heat                 | IEC 68-2-3 C <sub>a</sub>           | Temperature<br>Duration                               | 40°C<br>56 days                                |
| Accelerated damp heat     | IEC 68-2-3 C <sub>a</sub> with bias | Temperature<br>Humidity<br>Duration                   | 85°C<br>85% RH<br>500 hours                    |
| Solder resistability      | IEC 68-2-20 T <sub>b</sub> 1A       | Temperature,solder<br>Duration                        | 260°C<br>1013 s                                |

### Safety

The PKC 4000 I Series DC/DC power modules are designed in accordance with EN

60 950, Safety of information technology equipment including electrical business equipment, and certified by SEMKO.

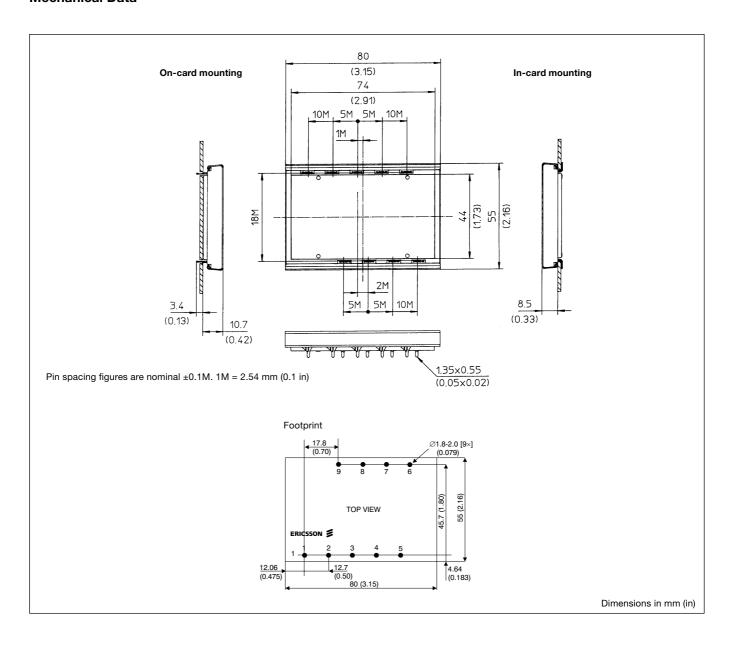
The PKC power modules are recognized by UL and meet the applicable requirements in UL 1950 Safety of information technology equipment, the applicable Canadian safety requirements and UL 1012 Standard for power supplies.

The DC/DC power module shall be installed in an end-use equipment. Abnormal/Component tests are conducted with the DC/DC power module input protected by an external 3 A fuse. The need for repeting these tests in the end-use appliance shall be considered if installed in a circuit having higher rated devices.

When the supply to the DC/DC power module meets all the requirements for SELV (<60Vdc), the output is considered to remain within SELV limits (level 3). The isolation is an operational insulation in accordance with EN 60 950.

The DC/DC power module is intended to be supplied by isolated secondary circuitry and shall be installed in compliance with the requirements of the ultimate application. If the products are connected to a 60 Vdc system reinforced insulation must be provided in the power supply that isolates the input from the ac mains. Single fault testing in the power supply must be performed in combination with the DC/DC power module to demonstrate that the output meets the requirement for SELV. One pole of the input and one pole of the output is to be grounded or both are to be kept floating.

Considerations should be given to measuring the case temperature to comply with max  $T_{C^{norm}}$  when operated at normal conditions in the end-use equipment.


The terminal pins are only intended for connection to mating connectors of internal wiring inside the end-use equipment.

These DC/DC power modules may be used in telephone equipment in accordance with paragraph 34 A.1 of UL 1459 (Standard for Telephone Equipment, second edition).

The isolation voltage between input and output and between case and input/output is 500 Vdc and the capacitor between input and output has a value of 10 nF. The leakage current is less than 1uA @ 50 Vdc.

The case is designed in non-coductive plastic. Its flammability ratings meets UL 94V-0.

## **Mechanical Data**



## **Connections**

| Pin | Designation | Function                                                                                                                                       |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RC          | Remote Control to turn-on and turn-off the output. It is also used to adjust the turn-off input voltage threshold (see $V_{\text{loff}}$ p.15) |
| 2   | NC          | The pin is Not Connected                                                                                                                       |
| 3   | –In         | Negative Input terminal                                                                                                                        |
| 4   | +In         | Positive Input terminal                                                                                                                        |
| 5   | Aux         | Auxiliary terminal (see V <sub>loff</sub> p. 15)                                                                                               |
| 6   | Out         | Negative Output terminal. Output 2 in dual and Output 3 in triple output models                                                                |
| 7   | Out         | Positive Output terminal. Output 2 in triple output models. Additional return in dual versions                                                 |
| 8   | Rtn         | Return terminal for all outputs                                                                                                                |
| 9   | Out         | Positive Output terminal. Output 1 in all models                                                                                               |

## Weight

50 gr (1.76 oz).

## Case

Blue anodized aluminum case with a plastic bottom cover and with tin plated brass pins.

## **Thermal Data**

## Two-parameter model

Power dissipation is generated in the components mounted on the ceramic substrate. The thermal properties of the PKC power module is determined by thermal conduction in the connected pins and thermal convection from the substrate via the case.

The two-parameter model characterize the thermal properties of the PKC power module and the equation below can be used for thermal design purposes if detailed information is needed. The values are given for a module mounted on a printed board assembly (PBA).

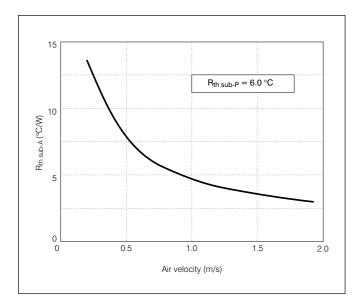
Note that the thermal resistance between the substrate and the air,  $R_{th \ sub-A}$  is strongly dependent on the air velocity.

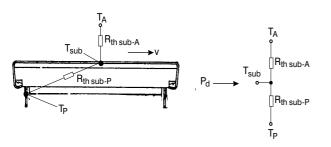
$$\begin{split} T_{sub} &= P_d \times R_{th \; sub\text{-}P} \times R_{th \; sub\text{-}A} / (R_{th \; sub\text{-}P} + R_{th \; sub\text{-}A}) + (T_P - T_A) \\ &\times R_{th \; sub\text{-}A} / (R_{th \; sub\text{-}P} + R_{th \; sub\text{-}A}) + T_A \end{split}$$

#### Where:

 $\begin{array}{ll} P_{\rm d} & : \mbox{dissipated power, calculated as } P_{\rm O} \times (1/\eta\text{-}1). \\ T_{sub} & : \mbox{max average substrate temperature,} \approx T_{Cmax}. \end{array}$ 

 $T_{A}$  : ambient air temperature at the lower side of the power

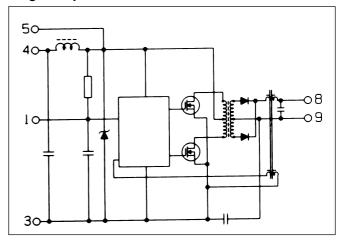

module.


T<sub>P</sub> : average pin temperature or solder joint temperature.

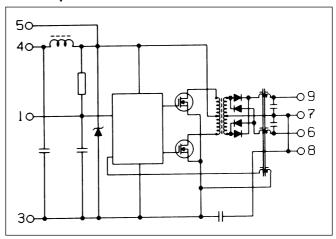
 $R_{th\;sub\text{-}P}$ : thermal resistance from  $T_{sub}$  to the pins.  $R_{th\;sub\text{-}A}$ : thermal resistance from  $T_{sub}$  to  $T_A$ .

v : velocity of ambient air.

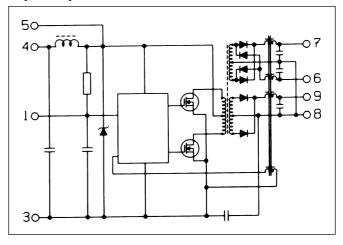
Air velocity in free convection is 0.2–0.3 m/s (40-60 lfm).







## **Electrical Data**

### **Fundamental circuit diagrams**


### Single output



### **Dual output**



#### **Triple output**



# **PKC 4111 PI**

 $T_C = 0... +95$  °C,  $V_I = 36...72$  V unless otherwise specified.

## Output

| 01                     | <b>.</b>                                    | 0                                                               |                                                                |      | Output 1 |      | 11                |
|------------------------|---------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|------|----------|------|-------------------|
| Charact                | teristics                                   | Conditions                                                      |                                                                | min  | typ      | max  | - Unit            |
| V <sub>Oi</sub>        | Output voltage initial setting and accuracy | T <sub>C</sub> = +25°C, I <sub>O</sub> = 3                      | A, V <sub>I</sub> = 53 V                                       | 5.03 | 5.06     | 5.10 | V                 |
| Vo                     | Output voltage tolerance band               | I <sub>O</sub> = 0.11.0×I <sub>Oma</sub><br>and long term drift |                                                                | 4.90 |          | 5.23 | V                 |
|                        | Idling circuit voltage                      | I <sub>O</sub> = 0 A                                            |                                                                |      |          | 5.25 | V                 |
|                        | Line regulation                             | I <sub>O</sub> = I <sub>Omax</sub>                              |                                                                |      |          | 60   | mV                |
|                        | Load regulation                             | I <sub>O</sub> = 0.11.0 × I <sub>Om</sub>                       | <sub>nax</sub> , V <sub>I</sub> = 53 V                         |      |          | 150  | mV                |
| t <sub>tr</sub>        | Load transient recovery time                | I <sub>O</sub> = 0.11.0 × I <sub>Orr</sub><br>load step = 2.4A  | <sub>nax</sub> , V <sub>I</sub> = 53 V                         |      | 100      |      | μs                |
| V <sub>tr</sub>        | Load transient voltage                      | · I                                                             | $\frac{di}{dt} < 1A/\mu s$                                     |      | +250     |      | mV                |
| <b>v</b> <sub>tr</sub> | Load transient voltage                      | dt                                                              |                                                                |      | -250     |      | mV                |
|                        | Short term drift                            | t = 010 minutes                                                 | t = 010 minutes                                                |      | -15      |      | mV                |
| T <sub>coeff</sub>     | Temperature coefficient                     | $I_{O} = I_{Omax}, T_{C} < T_{C}$                               | max                                                            |      | -1.2     |      | mV/°C             |
| t <sub>r</sub>         | Ramp-up time                                | I <sub>O</sub> =                                                | 0.10.9× V <sub>O</sub>                                         |      | 20       |      | ms                |
| ts                     | Start-up time                               | 0.11.0×I <sub>Omax</sub> ,<br>V <sub>I</sub> = 53 V             | From $V_I$ connection to $V_O = 0.9 \times V_{Oi}$             |      | 30       |      | ms                |
| Io                     | Output current                              |                                                                 |                                                                | 0    |          | 3.0  | А                 |
| P <sub>Omax</sub>      | Max output power <sup>1)</sup>              |                                                                 |                                                                | 15   |          |      | W                 |
| I <sub>lim</sub>       | Current limiting threshold                  | T <sub>C</sub> <t<sub>C max</t<sub>                             |                                                                | 3.1  |          |      | А                 |
| I <sub>sc</sub>        | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub>                        | =25°C Hick-up                                                  |      | <0.5     |      | А                 |
|                        |                                             |                                                                 | 20 Hz5 MHz                                                     |      |          | 80   | mV <sub>p-p</sub> |
| $V_{\text{Oac}}$       | Output ripple & noice                       | I <sub>O</sub> =I <sub>Omax</sub>                               | DC50 MHz                                                       |      |          | 100  | mV <sub>p-p</sub> |
|                        |                                             |                                                                 | 1 MHz bandwidth                                                |      |          | 35   | mV <sub>rms</sub> |
| SVR                    | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 V                        | ive, $1V_{p-p}$ , $V_{l} = 53 \text{ V}$<br>$V_{p-p}/V_{Op-p}$ | 50   |          |      | dB                |

<sup>1)</sup> See also Power derating.

| Characteristics |                   | Conditions                     | min  | typ  | max | Unit |
|-----------------|-------------------|--------------------------------|------|------|-----|------|
| η               | Efficiency        | $I_O = I_{Omax}$ , $V_I = 53V$ | 80.5 | 81.5 |     | %    |
| P <sub>d</sub>  | Power dissipation | $I_{O} = I_{Omax}$             |      | 3.4  |     | W    |

## **PKC 4113 PI**

 $T_C = 0...+95\,^{\circ}C$ ,  $V_I = 36...72\,V$  unless otherwise specified.

## Output

| 01                 |                                             | 0                                                               |                                                               |       | Output 1 |       | 11                |
|--------------------|---------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-------|----------|-------|-------------------|
| Charact            | teristics                                   | Conditions                                                      |                                                               | min   | typ      | max   | - Unit            |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | T <sub>C</sub> = +25°C, I <sub>O</sub> = 1                      | .5 A, V <sub>I</sub> = 53 V                                   | 11.94 | 12.00    | 12.06 | V                 |
| Vo                 | Output voltage tolerance band               | I <sub>O</sub> = 0.11.0×I <sub>Oma</sub><br>and long term drift |                                                               | 11.80 |          | 12.35 | V                 |
|                    | Idling circuit voltage                      | I <sub>O</sub> = 0 A                                            |                                                               |       |          | 12.40 | V                 |
|                    | Line regulation                             | $I_O = I_{Omax}$                                                |                                                               |       |          | 168   | mV                |
|                    | Load regulation                             | I <sub>O</sub> = 0.11.0 × I <sub>Om</sub>                       | <sub>lax</sub> , V <sub>I</sub> = 53 V                        |       |          | 360   | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | I <sub>O</sub> = 0.11.0 × I <sub>Om</sub><br>load step = 1.2 A  | <sub>lax</sub> , V <sub>I</sub> = 53 V                        |       | 200      |       | μѕ                |
| V <sub>tr</sub>    | Load transient voltage                      | di<br>dt <1Α/μs                                                 |                                                               |       | +600     |       | mV                |
| <b>v</b> tr        | toad transient voltage dt                   |                                                                 |                                                               |       | -600     |       | mV                |
|                    | Short term drift                            | t = 010 minutes                                                 | t = 010 minutes                                               |       | -45      |       | mV                |
| T <sub>coeff</sub> | Temperature coefficient                     | $I_O = I_{Omax}, T_C < T_{Cr}$                                  | max                                                           |       | -1.5     |       | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =                                                | 0.10.9× V <sub>O</sub>                                        |       | 20       |       | ms                |
| ts                 | Start-up time                               | 0.11.0×I <sub>Omax</sub> ,<br>V <sub>I</sub> = 53 V             | From $V_I$ connection to $V_O = 0.9 \times V_{Oi}$            |       | 30       |       | ms                |
| lo                 | Output current                              |                                                                 |                                                               | 0     |          | 1.5   | А                 |
| P <sub>Omax</sub>  | Max output power <sup>1)</sup>              |                                                                 |                                                               | 18    |          |       | W                 |
| I <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> <t<sub>C max</t<sub>                             |                                                               | 1.6   |          |       | А                 |
| I <sub>sc</sub>    | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub>                        | =25°C Hick-up                                                 |       | <0.5     |       | А                 |
|                    |                                             |                                                                 | 20 Hz5 MHz                                                    |       |          | 80    | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   | Output ripple & noice                       | I <sub>O</sub> =I <sub>Omax</sub>                               | DC50 MHz                                                      |       |          | 100   | mV <sub>p-p</sub> |
|                    |                                             |                                                                 | 1 MHz bandwidth                                               |       |          | 25    | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 V <sub>I</sub>           | ve, $1V_{p-p}$ , $V_{I} = 53 \text{ V}$<br>$v_{p-p}/V_{Op-p}$ | 43    |          |       | dB                |

<sup>1)</sup> See also Power derating.

| Characteristics |                   | Conditions                     | min | typ | max | Unit |
|-----------------|-------------------|--------------------------------|-----|-----|-----|------|
| η               | Efficiency        | $I_O = I_{Omax}$ , $V_I = 53V$ | 84  | 85  |     | %    |
| P <sub>d</sub>  | Power dissipation | $I_{O} = I_{Omax}$             |     | 3.2 |     | W    |

## **PKC 4121 PI**

 $T_C = 0...+95$  °C,  $V_I = 36...72$  V unless otherwise specified.  $I_{O1\,\text{nom}} = 0.75\,\text{A},\ I_{O2\,\text{nom}} = 0.75\,\text{A}$ 

## Output

| 01                 |                                             | 0                                                         |                                                                                                                |       | Output 1 |          |                                   | Output 2 |        | 11                |
|--------------------|---------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|----------|-----------------------------------|----------|--------|-------------------|
| Charact            | eristics                                    | Conditions                                                |                                                                                                                | min   | typ      | max      | min                               | typ      | max    | Unit              |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | $T_{C} = +25^{\circ}C, I_{O} = I_{O}$                     | <sub>nom</sub> , V <sub>I</sub> = 53 V                                                                         | 11.91 | 12.00    | 12.09    | -11.84                            | -12.00   | -12.16 | V                 |
| Vo                 | Output voltage tolerance band               | $I_{O1} = 0.11.0 \times I_{Or}$<br>and long term drift    |                                                                                                                | 11.75 |          | 12.35    | 11.64                             |          | 12.36  | V                 |
|                    | Idling circuit voltage                      | I <sub>O</sub> = 0 A                                      |                                                                                                                |       |          | 12.40    |                                   | 15.00    | 20.00  | V                 |
|                    | Line regulation                             | I <sub>O</sub> = I <sub>Onom</sub>                        |                                                                                                                |       |          | 120      |                                   |          | 144    | mV                |
|                    | Load regulation                             | $I_{O1} = 0.11.0 \times I_{Or}$<br>$V_{I} = 53 \text{ V}$ | $I_{O2} = I_{Onom}$                                                                                            |       |          | 360      |                                   |          |        | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | load step = 0.6 A s                                       | = 0.11.0 × I <sub>Onom</sub> , V <sub>I</sub> = 53 V<br>Id step = 0.6 A symmetrical load,<br>= I <sub>O2</sub> |       | 200      |          |                                   | 200      |        | μS                |
| V <sub>tr</sub>    | Load transient voltage                      | $I_{O1} = I_{O2}$ $\frac{di}{dt} < 1A/\mu s$              |                                                                                                                |       | +600     |          |                                   | +600     |        | mV                |
| V tr               | Load transient voltage                      | dt TAV µS                                                 |                                                                                                                |       | -600     |          |                                   | -600     |        | mV                |
|                    | Short term drift                            | t = 010 minutes                                           | - 010 minutes                                                                                                  |       | -30      |          |                                   | -30      |        | mV                |
| T <sub>coeff</sub> | Temperature coefficient                     | $I_O = I_{Onom}, T_C < T_{C_I}$                           | $I_O = I_{Onom}, T_C < T_{C max}$                                                                              |       | -1.0     |          |                                   | -1.0     |        | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =                                          | 0.10.9 × V <sub>O</sub>                                                                                        |       | 20       |          |                                   | 20       |        | ms                |
| ts                 | Start-up time                               | 0.11.0 × I <sub>Onom</sub> ,<br>V <sub>I</sub> = 53 V     | From $V_I$ connection to $V_O$ = 0.9 × $V_{Oi}$                                                                |       | 30       |          |                                   | 30       |        | ms                |
| Io                 | Output current                              |                                                           |                                                                                                                | 0     |          | 1.2      | 0                                 |          | 1.2    | Α                 |
| P <sub>Omax</sub>  | Max total output power <sup>1)</sup>        |                                                           |                                                                                                                |       |          | mir      | n 18                              |          |        | W                 |
| I <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> <t<sub>C max</t<sub>                       |                                                                                                                |       |          | min 1.02 | × P <sub>Omax</sub> <sup>2)</sup> |          |        |                   |
| I <sub>sc</sub>    | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub>                  | = 25°C Hick-up                                                                                                 |       | <0.5     |          |                                   | <0.5     |        | Α                 |
|                    |                                             |                                                           | 20 Hz5 MHz                                                                                                     |       |          | 90       |                                   |          | 90     | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   | Output ripple & noice                       | $I_O = I_{Onom}$                                          | DC50 MHz                                                                                                       |       |          | 110      |                                   |          | 110    | mV <sub>p-p</sub> |
|                    |                                             |                                                           | 1 MHz bandwidth                                                                                                |       |          | 25       |                                   |          | 30     | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 V <sub>p</sub>     | ve, $1V_{p-p}$ , $V_{I} = 53 \text{ V}$<br>$v_{D-p}/V_{Op-p}$                                                  | 43    |          |          | 43                                |          |        | dB                |

<sup>1)</sup> See also Power derating.

| Characteristics |                   | Conditions                                                | min | typ | max | Unit |
|-----------------|-------------------|-----------------------------------------------------------|-----|-----|-----|------|
| η               | Efficiency        | I <sub>O</sub> = I <sub>Onom</sub> , V <sub>I</sub> = 53V | 84  | 86  |     | %    |
| P <sub>d</sub>  | Power dissipation | $I_{O} = I_{Onom}$                                        |     | 2.9 |     | W    |

 $<sup>^{2)}\,</sup>I_{\text{lim}}$  on each output is set by the total load.

## **PKC 4126 PI**

 $T_C = 0...+95$  °C,  $V_I = 36...72$  V unless otherwise specified.  $I_{O1 \, nom} = 0.6$  A,  $I_{O2 \, nom} = 0.6$  A

## Output

| Chavast            | - winds                                     | Conditions                                            |                                                                                            |       | Output 1 |          |                                   | Output 2 | !      | Unit              |
|--------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|----------|----------|-----------------------------------|----------|--------|-------------------|
| Charact            | eristics                                    | Conditions                                            |                                                                                            | min   | typ      | max      | min                               | typ      | max    | Unit              |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | $T_{C} = +25^{\circ}C, I_{O} = I_{Oi}$                | <sub>nom</sub> , V <sub>I</sub> = 53 V                                                     | 14.90 | 15.00    | 15.10    | -14.82                            | -15.00   | -15.18 | V                 |
| V <sub>O</sub>     | Output voltage tolerance band               | $I_{O1} = 0.11.0 \times I_{Or}$ and long term drift   |                                                                                            | 14.70 |          | 15.40    | 14.55                             |          | 15.45  | V                 |
|                    | Idling circuit voltage                      | I <sub>O</sub> = 0 A                                  |                                                                                            |       |          | 15.45    |                                   | 18.00    | 23.00  | V                 |
|                    | Line regulation                             | $I_O = I_{Onom}$                                      |                                                                                            |       |          | 240      |                                   |          | 270    | mV                |
|                    | Load regulation                             |                                                       |                                                                                            |       |          | 450      |                                   |          |        | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | load step = 0.48 A                                    | D = 0.11.0 × I <sub>Onom</sub> , V <sub>I</sub> = 53 V and step = 0.48 A symmetrical load, |       | 250      |          |                                   | 250      |        | μѕ                |
| V <sub>tr</sub>    | Load transient voltage                      | $I_{O1} = I_{O2}$ $\frac{di}{dt} < 1A/\mu s$          |                                                                                            |       | +750     |          |                                   | +750     |        | mV                |
| <b>V</b> tr        | Load transient voltage                      | dt TAV µS                                             |                                                                                            |       | -750     |          |                                   | -750     |        | mV                |
|                    | Short term drift                            | t = 010 minutes                                       | t = 010 minutes                                                                            |       | -30      |          |                                   | -30      |        | mV                |
| T <sub>coeff</sub> | Temperature coefficient                     | $I_O = I_{Onom}, T_C < T_{Cr}$                        | $I_{O} = I_{Onom}, T_{C} < T_{C max}$                                                      |       | -1.0     |          |                                   | -1.0     |        | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =                                      | 0.10.9 × V <sub>O</sub>                                                                    |       | 20       |          |                                   | 20       |        | ms                |
| t <sub>s</sub>     | Start-up time                               | 0.11.0 × I <sub>Onom</sub> ,<br>V <sub>I</sub> = 53 V | From $V_I$ connection to $V_{O}$ = 0.9 × $V_{Oi}$                                          |       | 30       |          |                                   | 30       |        | ms                |
| Io                 | Output current                              |                                                       |                                                                                            | 0     |          | 1.0      | 0                                 |          | 1.0    | Α                 |
| P <sub>Omax</sub>  | Max total output power <sup>1)</sup>        |                                                       |                                                                                            |       |          | mir      | 18                                |          |        | W                 |
| I <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> <t<sub>C max</t<sub>                   |                                                                                            |       |          | min 1.02 | × P <sub>Omax</sub> <sup>2)</sup> |          |        |                   |
| I <sub>sc</sub>    | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub>              | = 25°C Hick-up                                                                             |       | <0.5     |          |                                   | <0.5     |        | Α                 |
|                    |                                             |                                                       | 20 Hz5 MHz                                                                                 |       |          | 90       |                                   |          | 90     | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   | Output ripple & noice                       | $I_O = I_{Onom}$                                      | DC50 MHz                                                                                   |       |          | 110      |                                   |          | 110    | mV <sub>p-p</sub> |
|                    |                                             |                                                       | 1 MHz bandwidth                                                                            |       |          | 25       |                                   |          | 30     | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 V <sub>p</sub> | ve, $1V_{p-p}$ , $V_{l} = 53 \text{ V}$<br>$_{0-p}/V_{Op-p}$ ))                            | 40    |          |          | 40                                |          |        | dB                |

<sup>1)</sup> See also Power derating.

| Characteristics |                   | Conditions                     | min | typ  | max | Unit |
|-----------------|-------------------|--------------------------------|-----|------|-----|------|
| η               | Efficiency        | $I_O = I_{Onom}$ , $V_I = 53V$ | 84  | 86.5 |     | %    |
| P <sub>d</sub>  | Power dissipation | $I_{O} = I_{Onom}$             |     | 2.8  |     | W    |

 $<sup>^{2)}\,</sup>I_{\text{lim}}$  on each output is set by the total load.

## **PKC 4131 PI**

 $T_C = 0...+95$  °C,  $V_I = 36...72$  V unless otherwise specified.  $I_{O1 \text{ nom}} = 2.0$  A,  $I_{O2, 3 \text{ nom}} = 0.2$  A

## Output

| Observe            | -4                                          | 0                                                                                                           | onditions                                                |      | Output ' | ı    | Output 2 |       |       | Output 3 |        |        | 11                |
|--------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|----------|------|----------|-------|-------|----------|--------|--------|-------------------|
| Cnara              | cteristics                                  | Conditions                                                                                                  |                                                          | min  | typ      | max  | min      | typ   | max   | min      | typ    | max    | Unit              |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | $T_C = +25^{\circ}C, I_O = I_C$                                                                             | <sub>onom</sub> , V <sub>I</sub> = 53 V                  | 5.03 | 5.06     | 5.10 | 11.94    | 12.10 | 12.26 | -11.90   | -12.10 | -12.30 | ٧                 |
| Vo                 | Output voltage tolerance band               | $I_O = 0.11.0 \times I_{One}$<br>and long term drift                                                        |                                                          | 4.90 |          | 5.23 | 11.64    |       | 12.36 | 11.64    |        | 12.36  | ٧                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                                                                        |                                                          |      |          | 5.25 |          | 15.00 | 16.80 |          | 15.00  | 16.80  | ٧                 |
|                    | Line regulation                             | I <sub>O</sub> = I <sub>Onom</sub>                                                                          |                                                          |      |          | 81   |          |       | 288   |          |        | 288    | mV                |
|                    | Load regulation                             | $I_{O1} = 0.11.0 \times I_{Or}$<br>$V_I = 53 \text{ V}$                                                     | nom, I <sub>O2, 3</sub> = I <sub>Onom</sub> ,            |      |          | 162  |          |       |       |          |        |        | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | I <sub>O</sub> = 0.11.0 × I <sub>Onom</sub> , V <sub>I</sub> = 53 V<br>Ioad step = 80% of I <sub>Onom</sub> |                                                          |      | 100      |      |          | 200   |       |          | 200    |        | μS                |
| .,                 | Load transient veltage                      | symmetrical load,                                                                                           |                                                          |      | +250     |      |          | +600  |       |          | +600   |        | mV                |
| V <sub>tr</sub>    | Load transient voltage                      | di <1Α/μs                                                                                                   |                                                          |      | -250     |      |          | -600  |       |          | -600   |        | mV                |
|                    | Short term drift                            | t = 010 minutes                                                                                             |                                                          |      | -15      |      |          | -36   |       |          | -36    |        | mV                |
| T <sub>coeff</sub> | Temperature coefficient                     | $I_O = I_{Onom}, T_C < T_{C max}$                                                                           |                                                          |      | -0.5     |      |          | -1.2  |       |          | -1.2   |        | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =                                                                                            | 0.10.9 × V <sub>O</sub>                                  |      | 20       |      |          | 20    |       |          | 20     |        | ms                |
| ts                 | Start-up time                               | 0.11.0 × I <sub>Onom</sub> ,<br>V <sub>I</sub> = 53 V                                                       | From $V_I$<br>connection to<br>$V_O = 0.9 \times V_{Oi}$ |      | 30       |      |          | 30    |       |          | 30     |        | ms                |
| Io                 | Output current                              |                                                                                                             |                                                          | 0    |          | 3.0  | 0        |       | 0.6   | 0        |        | 0.6    | Α                 |
| P <sub>Omax</sub>  | Max total output power <sup>1)</sup>        |                                                                                                             |                                                          |      |          |      | min 15   |       |       |          |        |        | w                 |
| I <sub>lim</sub>   | Current limiting threshold                  | $T_C < T_{C max}$ min 1.02 × $P_{Omax}^{(2)}$                                                               |                                                          |      |          |      |          |       |       |          |        |        |                   |
| I <sub>sc</sub>    | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub> = 25°C Hick-up                                                     |                                                          |      | <0.5     |      |          | <0.5  |       |          | <0.5   |        | Α                 |
|                    |                                             |                                                                                                             | 20 Hz5 MHz                                               |      |          | 100  |          |       | 110   |          |        | 110    | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   | Output ripple & noice                       | I <sub>O</sub> = I <sub>Onom</sub>                                                                          | DC50 MHz                                                 |      |          | 120  |          |       | 150   |          |        | 150    | mV <sub>p-p</sub> |
|                    |                                             |                                                                                                             | 1 MHz bandwidth                                          |      |          | 35   |          |       | 40    |          |        | 40     | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)               | f = 100  Hz sine wa<br>(SVR = 20 log (1 V <sub>p</sub>                                                      |                                                          | 50   |          |      | 43       |       |       | 43       |        |        | dB                |

 $<sup>^{1)}</sup>$  See also Power derating. Max output power on output 2 and 3 jointly is min 10 W.

| Characte       | eristics          | Conditions                                                | min  | typ | max | Unit |
|----------------|-------------------|-----------------------------------------------------------|------|-----|-----|------|
| η              | Efficiency        | I <sub>O</sub> = I <sub>Onom</sub> , V <sub>I</sub> = 53V | 79.5 | 81  |     | %    |
| P <sub>d</sub> | Power dissipation | $I_{O} = I_{Onom}$                                        |      | 3.5 |     | W    |

 $<sup>^{2)}\,</sup>I_{\text{lim}}$  on each output is set by the total load.

## **PKC 4132 PI**

 $T_C = 0...+95$ °C,  $V_I = 36...72$  V unless otherwise specified.  $I_{O1 \text{ nom}} = 2.0$  A,  $I_{O2, 3 \text{ nom}} = 0.17$  A

## Output

| 01                 | -41 - 41                                            | 0                                                                                                           |                                                           |      | Output 1 |      |       | Output 2 |       |        | Output 3 |        |                   |
|--------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|----------|------|-------|----------|-------|--------|----------|--------|-------------------|
| Cnara              | cteristics                                          | Conditions                                                                                                  |                                                           | min  | typ      | max  | min   | typ      | max   | min    | typ      | max    | Unit              |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy         | T <sub>C</sub> = +25°C, I <sub>O</sub> = I <sub>O</sub>                                                     | <sub>nom</sub> , V <sub>I</sub> = 53 V                    | 5.03 | 5.06     | 5.10 | 14.80 | 15.00    | 15.20 | -14.78 | -15.00   | -15.22 | V                 |
| Vo                 | Output voltage tolerance band                       | $I_O = 0.11.0 \times I_{Onc}$<br>and long term drift                                                        |                                                           | 4.90 |          | 5.23 | 14.40 |          | 15.60 | 14.40  |          | 15.60  | V                 |
|                    | Idling voltage                                      | I <sub>O</sub> = 0 A                                                                                        |                                                           |      |          | 5.25 |       | 18.00    | 19.80 |        | 18.00    | 19.80  | V                 |
|                    | Line regulation                                     | $I_{O} = I_{Onom}$                                                                                          |                                                           |      |          | 81   |       |          | 330   |        |          | 330    | mV                |
|                    | Load regulation                                     | l <sub>O1</sub> = 0.11.0 × l <sub>Or</sub><br>V <sub>I</sub> = 53 V                                         | <sub>lom</sub> , I <sub>O2, 3</sub> = I <sub>Onom</sub> , |      |          | 182  |       |          |       |        |          |        | mV                |
| t <sub>tr</sub>    | Load transient recovery time                        | I <sub>O</sub> = 0.11.0 × I <sub>Onom</sub> , V <sub>I</sub> = 53 V<br>load step = 80% of I <sub>Onom</sub> |                                                           |      | 100      |      |       | 250      |       |        | 250      |        | μS                |
| V                  | Load transient voltage                              | symmetrical load, I <sub>O2</sub> = I <sub>O3</sub>                                                         |                                                           |      | +250     |      |       | +750     |       |        | +750     |        | mV                |
| V <sub>tr</sub>    | Load transient voltage $\frac{di}{dt}$ <1A/ $\mu$ s |                                                                                                             |                                                           |      | -250     |      |       | -750     |       |        | -750     |        | mV                |
|                    | Short term drift                                    | t = 010 minutes                                                                                             |                                                           |      | -15      |      |       | -45      |       |        | -45      |        | mV                |
| T <sub>coeff</sub> | Temperature coefficient                             | $I_O = I_{Onom}, T_C < T_{Cr}$                                                                              | $I_O = I_{Onom}, T_C < T_{C max}$                         |      | -0.5     |      |       | -1.5     |       |        | -1.5     |        | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                        | I <sub>O</sub> =                                                                                            | 0.10.9 × V <sub>O</sub>                                   |      | 20       |      |       | 20       |       |        | 20       |        | ms                |
| ts                 | Start-up time                                       | 0.11.0 × I <sub>Onom</sub> ,<br>V <sub>I</sub> = 53 V                                                       | From $V_l$<br>connection to<br>$V_O = 0.9 \times V_{Oi}$  |      | 30       |      |       | 30       |       |        | 30       |        | ms                |
| Io                 | Output current                                      |                                                                                                             |                                                           | 0    |          | 3.0  | 0     |          | 0.5   | 0      |          | 0.5    | Α                 |
| P <sub>Omax</sub>  | Max total output power1)                            |                                                                                                             |                                                           |      | min 15   |      |       |          |       |        |          |        | W                 |
| l <sub>lim</sub>   | Current limiting threshold                          | $T_C < T_{C max}$ min 1.02 × $P_{Omax}^{(2)}$                                                               |                                                           |      |          |      |       |          |       |        |          |        |                   |
| I <sub>sc</sub>    | Short curcuit current                               | V <sub>O</sub> = 0.20.5V, T <sub>A</sub>                                                                    | = 25°C Hick-up                                            |      | <0.5     |      |       | <0.5     |       |        | <0.5     |        | Α                 |
|                    |                                                     |                                                                                                             | 20 Hz5 MHz                                                |      |          | 100  |       |          | 110   |        |          | 110    | mV <sub>p-p</sub> |
| $V_{\text{Oac}}$   | Output ripple & noice                               | $I_{O} = I_{Onom}$                                                                                          | DC50 MHz                                                  |      |          | 120  |       |          | 150   |        |          | 150    | mV <sub>p-p</sub> |
|                    |                                                     |                                                                                                             | 1 MHz bandwidth                                           |      |          | 35   |       |          | 40    |        |          | 40     | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)                       | f = 100 Hz sine war<br>(SVR = 20 log (1 V <sub>p</sub>                                                      |                                                           | 50   |          |      | 40    |          |       | 40     |          |        | dB                |

 $<sup>^{1)}</sup>$  See also Power derating. Max output power on output 2 and 3 jointly is min 10 W.

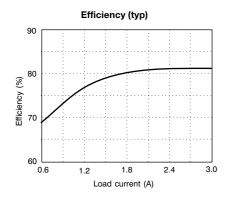
| Characte       | eristics          | Conditions                                                 | min | typ | max | Unit |
|----------------|-------------------|------------------------------------------------------------|-----|-----|-----|------|
| η              | Efficiency        | I <sub>O</sub> = I <sub>Onom</sub> , V <sub>I</sub> = 53 V | 80  | 82  |     | %    |
| P <sub>d</sub> | Power dissipation | $I_{O} = I_{Onom}$                                         |     | 3.3 |     | W    |

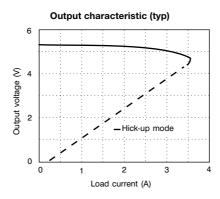
 $<sup>^{2)}\,</sup>I_{\text{lim}}$  on each output is set by the total load.

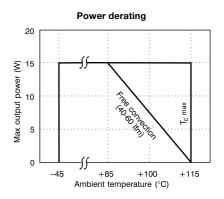
## **PKC 4135 PI**

 $T_C = 0...+95$ °C,  $V_I = 36...72$  V unless otherwise specified.  $I_{O1}$  nom = 2.0 A,  $I_{O2}$  nom = 0.2 A,  $I_{O3}$  nom = 0.5 A

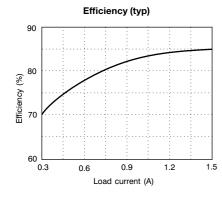
## Output

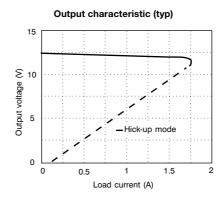

| 01                 | -4                                          | Conditions                                                                                                  |                                                               |      | Output 1 |      | Output 2 |       |       | Output 3 |       |       | l lmia            |
|--------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|----------|------|----------|-------|-------|----------|-------|-------|-------------------|
| Chara              | cteristics                                  | Conditions                                                                                                  |                                                               | min  | typ      | max  | min      | typ   | max   | min      | typ   | max   | Unit              |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | $T_{\rm C} = +25^{\circ}{\rm C},  I_{\rm O} = I_{\rm O}$                                                    | <sub>nom</sub> , V <sub>I</sub> = 53 V                        | 5.03 | 5.06     | 5.10 | 11.85    | 12.10 | 12.35 | -4.86    | -5.00 | -5.14 | V                 |
| Vo                 | Output voltage tolerance band               | $I_O = 0.11.0 \times I_{Onc}$<br>and long term drift                                                        |                                                               | 4.90 |          | 5.23 | 11.52    |       | 12.36 | 4.75     |       | 5.25  | V                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                                                                        |                                                               |      |          | 5.25 |          | 15.00 | 16.00 |          | 6.00  | 6.50  | V                 |
|                    | Line regulation                             | $I_{O} = I_{Onom}$                                                                                          |                                                               |      |          | 90   |          |       | 336   |          |       | 110   | mV                |
|                    | Load regulation                             | $I_{O1} = 0.11.0 \times I_{Or}$<br>$V_I = 53 \text{ V}$                                                     | <sub>lom</sub> , I <sub>O2, 3</sub> = I <sub>Onom</sub> ,     |      |          | 190  |          |       |       |          |       |       | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | I <sub>O</sub> = 0.11.0 × I <sub>Onom</sub> , V <sub>I</sub> = 53 V<br>load step = 80% of I <sub>Onom</sub> |                                                               |      | 100      |      |          | 200   |       |          | 100   |       | μЅ                |
| .,                 |                                             | ·                                                                                                           | 1 IOnom                                                       |      | +250     |      |          | +600  |       |          | +250  |       | mV                |
| V <sub>tr</sub>    | Load transient voltage                      | di <1Α/μs                                                                                                   |                                                               |      | -250     |      |          | -600  |       |          | -250  |       | mV                |
|                    | Short term drift                            | t = 010 minutes                                                                                             |                                                               |      | -15      |      |          |       |       |          |       |       | mV                |
| T <sub>coeff</sub> | Temperature coefficient                     | $I_O = I_{Onom}, T_C < T_{C max}$                                                                           |                                                               |      | -0.5     |      |          | -1.0  |       |          | -0.5  |       | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =                                                                                            | 0.10.9 × V <sub>O</sub>                                       |      | 20       |      |          | 20    |       |          | 20    |       | ms                |
| ts                 | Start-up time                               | 0.11.0 × I <sub>Onom</sub> ,<br>V <sub>I</sub> = 53 V                                                       | From $V_1$<br>connection to<br>$V_0 = 0.9 \times V_{0i}$      |      | 30       |      |          | 30    |       |          | 30    |       | ms                |
| Io                 | Output current                              |                                                                                                             |                                                               | 0    |          | 3.0  | 0        |       | 0.6   | 0        |       | 1.0   | Α                 |
| P <sub>Omax</sub>  | Max total output power <sup>1)</sup>        |                                                                                                             |                                                               |      |          |      | min 15   |       |       |          |       |       | W                 |
| I <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> <t<sub>C max</t<sub>                                                                         | T <sub>C max</sub> min 1.02 × P <sub>Omax</sub> <sup>2)</sup> |      |          |      |          |       |       |          |       |       |                   |
| I <sub>sc</sub>    | Short curcuit current                       | V <sub>O</sub> = 0.20.5V, T <sub>A</sub> = 25°C Hick-up                                                     |                                                               |      | <0.5     |      |          | <0.5  |       |          | <0.5  |       | Α                 |
|                    |                                             |                                                                                                             | 20 Hz5 MHz                                                    |      |          | 100  |          |       | 110   |          |       | 100   | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   | Output ripple & noice                       | $I_{O} = I_{Onom}$                                                                                          | DC50 MHz                                                      |      |          | 120  |          |       | 150   |          |       | 120   | mV <sub>p-p</sub> |
|                    |                                             |                                                                                                             | 1 MHz bandwidth                                               |      |          | 35   |          |       | 40    |          |       | 35    | mV <sub>rms</sub> |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine war<br>(SVR = 20 log (1 V <sub>p</sub>                                                      |                                                               | 50   |          |      | 43       |       |       | 50       |       |       | dB                |

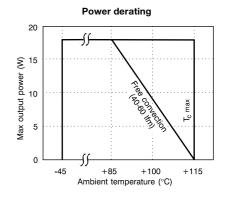

<sup>1)</sup> See also Power derating. Max output power on output 2 and 3 jointly is min 10 W.


| Characteristics |                   | Conditions                     | min  | min typ |  | Unit |
|-----------------|-------------------|--------------------------------|------|---------|--|------|
| η               | Efficiency        | $I_O = I_{Onom}$ , $V_I = 53V$ | 79.5 | 81      |  | %    |
| P <sub>d</sub>  | Power dissipation | $I_{O} = I_{Onom}$             |      | 3.5     |  | W    |

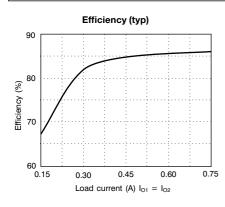
 $<sup>^{2)}\,</sup>I_{\text{lim}}$  on each output is set by the total load.

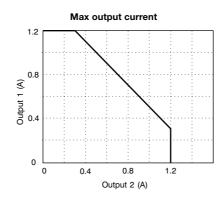

## PKC 4111 PI

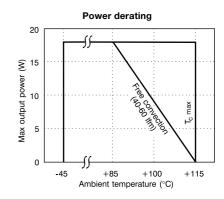


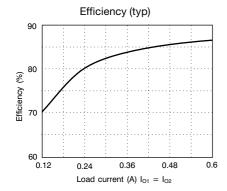


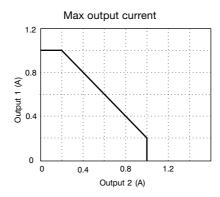


## PKC 4113 PI

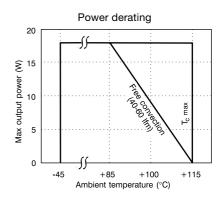


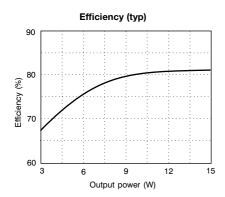


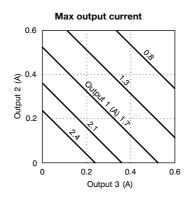


## **PKC 4121 PI**

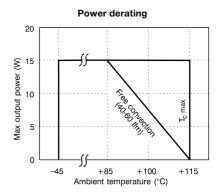


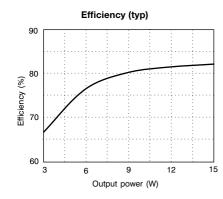


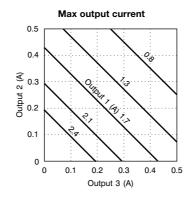


## **PKC 4126 PI**

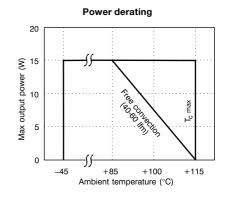


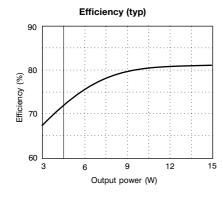


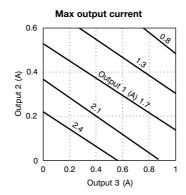


## PKC 4131 PI

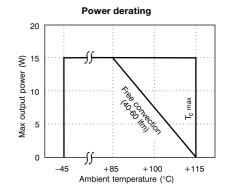






## PKC 4132 PI

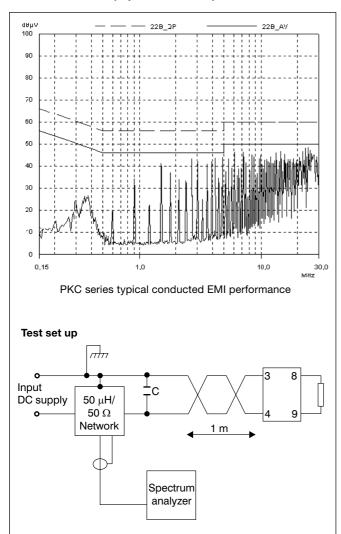





## PKC 4135 PI








## **EMC Specifications**

The PKC power module is mounted on a double sided printed circuit board (PB) with groundplane during EMC measurements. The fundamental switching frequency is 300 kHz  $\pm$  15% @  $I_{O}$  =  $I_{O\ max}$  or  $I_{O\ nom}$ 

### **Conducted EMI (input terminals)**

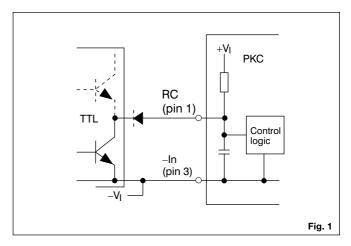


The PKC meets class A in VDE 0871/0878, FCC Part 15J, and CISPR 22 (EN 55022).

 $C = 4.7 \mu F$  electrolytic to prevent oscillations on supply mains

#### **Radiated EMI**

To minimize radiation it is recommended to have a ground or earth plane in the printed board (PB).

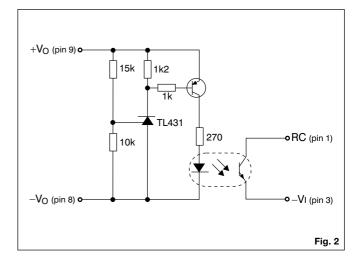

### Output Ripple & Noise (Voac)

Output ripple & noise is measured at the output terminals with a 50 MHz oscilloscope and a true rms DVM (crest factor >4.5). The oscilloscope's input impedance should be adapted to the impedance of the coax cable and the output terminal connection should have a minimum ground wire loop.

## **Operating information**

### **Remote Control (RC)**

Turn-on or turn-off can be realized by using the RC-pin. Normal operation is achieved if pin 1 is open (NC). If pin 1 is connected to pin 3 the PKC DC/DC power module turns off. To ensure safe turn-off the voltage difference between pin 1 and 3 shall be less than 1.8 V. RC is TTL open collector compatible (see fig. 1). Pin 1 is an output and no current should be driven into pin 1. Use a diode if necessary e.g. totem pole TTL logic. The internal pull-up resistance is 36 kW.




#### **Input and Output Impedance**

Both the source impedance of the power feeding and the load impedance will interact with the impedance of the DC/DC power module.

It is most important to have the ratio between L and C as low as possible, i.e. a low characteristic impedance, both at the input and output, as the power modules have a low energy storage capability.

A capacitive compensation is necessary if the source or load inductance is larger than 10  $\mu H.$  Use wet electrolytic capacitors. Their equivalent series resistance together with the capacitance acts as a lossless damping filter. Suitable capacitor values are in the range10–100  $\mu F.$ 



### Turn-off Input Voltage (V<sub>loff</sub>)

The input voltage is monitored and the PKC DC/DC power module will turn on and turn off at predetermined levels. The levels can be decreased by means of an external resistor connected between pin 1 and pin 5.

A 200 k $\Omega$  resistor will decrease the shutdown voltage below 35 V. To maintain the nominal output voltage at input voltages below  $V_I$ min it may be necessary to decrease the load.

### **Maximum Capacitive Load**

The maximum recommended capacitance connected direct t the PKC DC/DC power modules output without resistance or inductance in series is 100  $\mu$ F/A (output current rating). Connect capacitors across the load for maximum effectiveness and maximum stability margins.

### **Over Voltage Protection (OVP)**

The remote control can be utilized also for OVP by using the external circuitry in fig. 2. Resistor values are for 5 V output applications, but can easily be adjusted for other output voltages and the desired OVP level.

### **Current Limiting Protection**

The output power is limited at loads above the output current limiting threshold  $(I_{\rm lim}),$  specified as a minimum value. As the PKC multiple output models are power limited, current limiting threshold for an individual output is set by the loads on the other outputs. The power module can withstand continuous short circuit without destruction. A hick-up mode is used on all models to minimize the internal power dissipation. The hick-up time constant is set by the slow start.

## Quality

#### Reliability

Meantime between failure (MTBF) is calculated and verified by field data statistics to >2 million hours at full output power and a case temperature of 75°C, using the Ericsson failure rate data system. For more information see Design Note 002.

### **Quality Statement**

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000,  $6\sigma$  and SPC, are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out by a burn-in procedure and an ATE-based final test.

Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

#### Warranty

Ericsson Microelectronics warrants to the original purchaser or end user that the products conform to this Data Sheet and are free from material and workmanship defects for a period of five (5) years from the date of manufacture, if the product is used within specified conditions and not opened. In case the product is discontinued, claims will be accepted up to three (3) years from the date of the discontinuation.

For additional details on this limited warranty we refer to Ericsson Microelectronics AB's "General Terms and Conditions of Sales", or individual contract documents.

### Limitation of liability

Ericsson Microelectronics does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Microelectronics. These products are sold only according to Ericsson Microelectronics' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice.

## **Product Program**

| V                       |                                                                           | V <sub>O</sub> /I <sub>O</sub> max                                    | P <sub>O</sub> max                     | Ordering No.                                 |                                                                                                       |  |
|-------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Vı                      | Output 1                                                                  | Output 2                                                              | Output 3                               | FO IIIAX                                     | Ordering No.                                                                                          |  |
| 48/60 V<br>(max 72 Vdc) | 5 V/3 A<br>12 V/1.5 A<br>+12 V/1.2 A<br>+15 V/1 A<br>+5 V/3 A<br>+5 V/3 A | -12 V/1.2 A<br>-15 V/1 A<br>+12 V/0.6 A<br>+15 V/0.5 A<br>+12 V/0.6 A | -12 V/0.6 A<br>-15 V/0.5 A<br>-5 V/1 A | 15 W<br>18 W<br>18 W<br>18 W<br>15 W<br>15 W | PKC 4111 PI<br>PKC 4113 PI<br>PKC 4121 PI<br>PKC 4126 PI<br>PKC 4131 PI<br>PKC 4132 PI<br>PKC 4135 PI |  |

The latest and most complete information can be found on our website!

Ericsson Microelectronics AB