MINIATURE RELAY

2 POLES-1 to 2 A (for signal switching)

NA SERIES

FEATURES

- Slim type relay for high density mounting
- Conforms to Bellcore specification and FCC Part 68
-Dielectric strength 1,500 VAC between coil and contacts
-Surge strength $2,500 \mathrm{~V}$ between coil and contacts (at $2 \times$ 10 s surge wave)
- Maximum switching capability - 4.2A, 700VAC
- UL, CSA recognized
- High sensitivity and low consumption power
- High reliability-bifurcated contacts
- DIL pitch terminals
- Plastic sealed type
- RoHS compliant since date code: 0437B8 Please see page 7 for more information

- ORDERING INFORMATION
[Example]
NA L - D 12
(a)
$\overline{(b)}{ }^{*}$
() $\overline{\text { (c) }} \overline{\text { (d) }}$
$\frac{W}{(e)}$ - K

(a)	Series Name	NA : NA Series
(b)	Operation Function	Nil : Standard type L $:$ Latching type
(c)	Number of Coil	Nil : Single winding type D $:$ Double winding type
(d)	Nominal Voltage	Refer to the COIL DATA CHART
(e)	Contact	W : Bifurcated type
(f)	Enclosure	K : Plastic sealed type

[^0]
- COIL DATA CHART

	MODEL	Nominal voltage	Coil resistance ($\pm 10 \%$)	Must operate voltage*1	Must release voltage*	Nominal power
	NA-1.5 W-K	1.5 VDC	16.1Ω	+1.13 VDC	+0.15 VDC	140 mW
	NA- $3 \mathrm{~W}-\mathrm{K}$	3 VDC	64.3Ω	+2.25 VDC	+0.3 VDC	140 mW
	NA-4.5 W-K	4.5 VDC	145Ω	+3.38 VDC	+0.45 VDC	140 mW
	NA- $5 \mathrm{~W}-\mathrm{K}$	5 VDC	178Ω	+3.75 VDC	+0.5 VDC	140 mW
	NA- 6 W-K	6 VDC	257Ω	+4.5 VDC	+0.6 VDC	140 mW
	NA- 9 W-K	9 VDC	579Ω	+6.75 VDC	+0.9 VDC	140 mW
	NA-12 W-K	12 VDC	1,028 Ω	+9.0 VDC	+1.2 VDC	140 mW
	NA-18 W-K	18 VDC	1,620 Ω	+13.5 VDC	+1.8 VDC	200 mW
	NA-24 W-K	24 VDC	2,880 Ω	+18.0 VDC	+2.4 VDC	200 mW
	NA-48 W-K	48 VDC	7,680 Ω	+36.0 VDC	+4.8 VDC	300 mW

Note: ${ }^{* 1}$ Specified values are subject to pulse wave voltage.
All values in the table are measured at $20^{\circ} \mathrm{C}$.

	MODEL	Nominal voltage	$\begin{gathered} \text { Coil resistance } \\ (\pm 10 \%) \end{gathered}$	Set voltage	Reset voltage	Nominal power
	NAL-1.5W-K	1.5 VDC	22.5Ω	+1.13 VDC	-1.13 VDC	100 mW
	NAL- 3 W-K	3 VDC	90Ω	+2.25 VDC	-2.25 VDC	100 mW
	NAL-4.5W-K	4.5 VDC	203Ω	+3.38 VDC	-3.38 VDC	100 mW
	NAL- $5 \mathrm{~W}-\mathrm{K}$	5 VDC	250Ω	+3.75 VDC	-3.75 VDC	100 mW
	NAL- 6 W-K	6 VDC	360Ω	+4.5 VDC	-4.5 VDC	100 mW
	NAL- 9 W-K	9 VDC	810Ω	+6.75 VDC	-6.75 VDC	100 mW
	NAL-12 W-K	12 VDC	1,440 Ω	+9.0 VDC	-9.0 VDC	100 mW
	NAL-18 W-K	18 VDC	2,160 Ω	+13.5 VDC	-13.5 VDC	150 mW
	NAL-24 W-K	24 VDC	3,840 Ω	+18.0 VDC	-18.0 VDC	150 mW
	NAL-D1.5W-K	1.5 VDC	P 11.25Ω	+1.13 VDC		200 mW
			S 11.25Ω		+1.13 VDC	
	NAL-D 3 W-K	3 VDC	P 45Ω	+2.25 VDC		200 mW
			S 45Ω		+2.25 VDC	
	NAL-D4.5W-K	4.5 VDC	P 101Ω	+3.38 VDC		200 mW
			S 101Ω		+3.38 VDC	
	NAL-D $5 \mathrm{~W}-\mathrm{K}$	5 VDC	P 125Ω	+3.75 VDC		200 mW
			S 125Ω		+3.75 VDC	
	NAL-D 6 W-K	6 VDC	P 180Ω	+4.5 VDC		200 mW
			S 180Ω		+4.5 VDC	
	NAL-D 9 W-K	9 VDC	P 405Ω	+6.75 VDC		200 mW
			S 405Ω		+6.75 VDC	
	NAL-D12 W-K	12 VDC	P 720Ω	+9.0 VDC		200 mW
			S 720Ω		+9.0 VDC	
	NAL-D18 W-K	18 VDC	P 1,080 Ω	+13.5 VDC		300 mW
			S 1,080 Ω		+13.5 VDC	
	NAL-D24 W-K	24 VDC	P 1,920 Ω	+18.0 VDC		300 mW
			S 1,920 Ω		+18.0 VDC	

Note: *1 Specified values are subject to pulse wave voltage.
P: Primary coil S: Secondary coil All values in the table are measured at $20^{\circ} \mathrm{C}$.

- SPECIFICATIONS

Item			Standard Type	Single Winding Latching Type	Double Winding Latching Type
			NA-() W-K	NAL-() W-K	NAL-D () W-K
Contact	Arrangement		2 form C (DPDT)		
	Material		Gold overlay silver alloy		
	Style		Bifurcated		
	Resistance (initial)		Maximum $50 \mathrm{~m} \Omega$ (at 1 A 6 VDC)		
	Rating (resistive)		0.5 A 125 VAC or 1 A 30 VDC		
	Maximum Carrying Current		2 A		
	Maximum Switching Power		62.5 AV, 30 W		
	Maximum Switching Voltage		250 VAC, 220 VDC		
	Maximum Switching Current		2 A		
	Minimum Switching Load*1		0.01 mA 10 mVDC		
	Capacitance		Approximately 0.5 pF (between open contacts, adjacent contacts) Approximately 1.0 pF (between coil and contacts)		
Coil	Nominal Power (at $20^{\circ} \mathrm{C}$)		140 to 300 mW	100 to 150 mW	200 to 300 mW
	Operate Power (at $20^{\circ} \mathrm{C}$)		80 to 170 mW	60 to 85 mW	115 to 170 mW
	Operating Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no frost)(refer to the CHARACTERISTIC DATA)		
Time Value	Operate (at nominal voltage)		Maximum 6 ms	Maximum 6 ms (set)	
	Release (at nominal voltage)		Maximum 4 ms	Maximum 6 ms (reset)	
Life	Mechanical		1×10^{8} operations minimum 1×10^{7} operations minimum		
	Electrical		$2 \times 10^{5} \mathrm{ops}$. min. (0.5 A 125 VAC), $5 \times 10^{5} \mathrm{ops}$. min. (1 A 30 VDC)		
Other	Vibration Resistance	Misoperation	10 to 55 Hz (double amplitude of 3.3 mm)		
		Endurance	10 to 55 Hz (double amplitude of 5.0 mm)		
	Shock Resistance	Misoperation	$500 \mathrm{~m} / \mathrm{s}^{2}$ (11 $\pm 1 \mathrm{~ms}$)		
		Endurance	$1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$		
	Weight		Approximately 1.5 g		

*1 Minimum switching loads mentioned above are reference values. Please perform the confirmation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.

- INSULATION

Item	Standard	Single latching	Double latching
Resistance (initial) (500 VDC)	Minimum $1,000 \mathrm{M} \Omega$		
Dielectric Strength	1,000 VAC 1 min. (open contacts / adjacent contents)		
	1,500 VAC 1 min. (coil and contacts)	1,000 VAC 1 min. (coil and contacts)	
	$1,500 \mathrm{~V}$ (open contact and adjacent contact) $10 \times 700 \mu s$ standard wave		
	$2,500 \mathrm{~V}$ (coil and contact) $2 \times 10 \mu \mathrm{~s}$ standard wave	$1,500 \mathrm{~V}$ (coil and contact) $10 \times 160 \mu \mathrm{~s}$ standard wave	

SAFETY STANDARDS

Type	Compliance	Contact rating
UL	UL 508, UL 1950	Flammability: UL 94-V0 (plastics)
		$0.5 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)
	E45026	2A, 30VDC (resistive)
CSA	C22.2 No. 14, No. 950	0.3A, 110VDC (resistive)
	LR 35579	

CHARACTERISTIC DATA

High Frequency Characteristics

REFERENCE DATA

NA SERIES

■ DIMENSIONS

- Dimensions
- Schematics (Bottom View)
- PC board mounting hole layout (Bottom View)

NA, NAL type (Non-latching type, single winding latching type)

NAL-D type (double winding latching type)

Unit: mm

RoHS Compliance and Lead Free Relay Information

1. General Information

- Relays produced after the specific date code that is indicated on each data sheet are lead-free now. All of our signal and power relays are lead-free. Please refer to Lead-Free Status Info. (http://www.fujitsu.com/us/downloads/MICRO/fcai/relays/lead-free-letter.pdf)
- Lead free solder paste currently used in relays is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$.
- All signal and power relays also comply with RoHS. Please refer to individual data sheets. Relays that are RoHS compliant do not contain the 5 hazardous materials that are restricted by RoHS directive (lead, mercury, chromium IV, PBB, PBDE).
- It has been verified that using lead-free relays in leaded assembly process will not cause any problems (compatible).
- "LF" is marked on each outer and inner carton. (No marking on individual relays).
- To avoid leaded relays (for lead-free sample, etc.) please consult with area sales office.
- We will ship leaded relays as long as the leaded relay inventory exists.

Note: Cadmium was exempted from RoHSon October 21, 2005. (Amendment to Directive 2002/95/EC)

2. Recommended Lead Free Solder Profile

- Recommended solder paste $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$.

Reflow Solder condition

Flow Solder condition:

Pre-heating: maximum $120^{\circ} \mathrm{C}$
Soldering: dip within 5 sec . at
$260^{\circ} \mathrm{C}$ soler bath

Solder by Soldering Iron:

Soldering Iron
Temperature: maximum $360^{\circ} \mathrm{C}$
Duration: maximum 3 sec .

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical realys.

4. Tin Whisker

- Dipped SnAgCu solder is known as low risk tin whisker. No considerable length whisker was found by our in house test.

Fujitsu Components International Headquarter Offices

Japan	Europe
Fujitsu Component Limited	Fujitsu Components Europe B.V.
Gotanda-Chuo Building	Diamantlaan 25
3-5, Higashigotanda 2-chome, Shinagawa-ku	2132 WV Hoofddorp
Tokyo 141, Japan	Netherlands
Tel: (81-3) 5449-7010	Tel: (31-23) 5560910
Fax: (81-3) 5449-2626	Fax: (31-23) 5560950
Email: promothq@ft.ed.fujitsu.com	Email: info@fceu.fujitsu.com
Web: www.fcl.fujitsu.com	Web: emea.fujitsu.com/components/
North and South America	Asia Pacific
Fujitsu Components America, Inc.	Fujitsu Components Asia Ltd.
250 E. Caribbean Drive	102E Pasir Panjang Road
Sunnyvale, CA 94089 U.S.A.	\#01-01 Citilink Warehouse Complex
Tel: (1-408) 745-4900	Singapore 118529
Fax: (1-408) 745-4970	Tel: $(65) 6375-8560$
Email: components@us.fujitsu.com	Fax: $(65) 6273-3021$
Web: http://www.fujitsu.com/us/services/edevices/components/	Email: fcal@fcal.fujitsu.com
	Web: http://www.fujitsu.com/sg/services/micro/components/

©2008 Fujitsu Components America, Inc. All rights reserved. All trademarks or registered trademarks are the property of their respective owners.

Fujitsu Components America or its affiliates do not warrant that the content of datasheet is error free. In a continuing effort to improve our products Fujitsu Components America, Inc. or its affiliates reserve the right to change specifications/datasheets without prior notice.
Rev. January 8, 2008.

[^0]: Note: Actual marking omits the hyphen (-) of (*)

