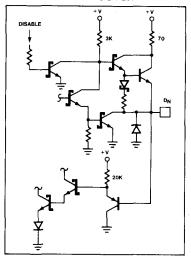
DESCRIPTION

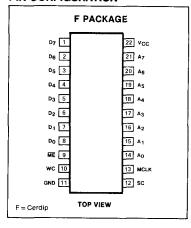
The 8X350 bipolar RAM is designed principally as a working storage element in an 8X300 based system. Internal circuitry is provided for direct use in 8X300 applications. When used with the 8X300, the RAM address and data buses are tied together and connected to the IV bus of the system.

The data inputs and outputs share a common I/O bus with 3-state outputs.

The 8X350 is available in commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N8X350-F, and for the military temperature range (-55°C to +125°C) specify S8X350-F.


FEATURES

- On-chip address latches
- · 3-state outputs
- Schottky clamped TTL
- Internal control logic for 8X300 system
- Directly interfaces with the 8X300 bipolar microprocessor with no external logic
- . May be used on left or right bank

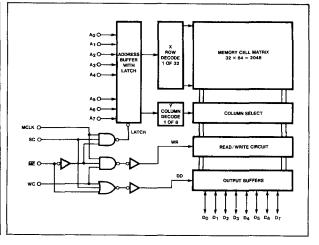

APPLICATIONS

8X300 or 8X305 working storage

TYPICAL I/O STRUCTURE

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS


	PARAMETER	RATING	UNIT
vcc	Supply voltage	+7	Vdc
VIN	Input voltage	+5.5	Vdc
	Output voltage		Vdc
۷он	High	+5.5	
٧o	Off-state	+5.5	
	Temperature range		°C
TA	Operating		
	Commercial	0 to +75	
	Military	-55 to +125	
TSTG	Storage	-65 to +150	

TRUTH TABLE

Note X = Don't care

THOTT TABLE Note X = DORT Care										
MODE	ME	sc	wc	MCLK	BUSSED DATA/ADDRESS LINES					
Hold address Disable data out	1	x	х	х	High Z data out					
Input new address	0	1	0	1	Address High Z					
Disable data out	0	1	0	0	High Z data out					
Hold address Write data	0	o	1	1	Data in					
Hold address Disable data out	0	0	1	0	High Z data out					
Hold address Read data	0	0	0	х	Data out					
Undefined state 12	0	1	1	1	_					
Hold address ¹² Disable data out	0	1	1_	0	Hìgh Z data out					

BLOCK DIAGRAM

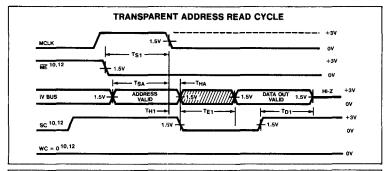
2048-BIT BIPOLAR RAM (256 \times 8)

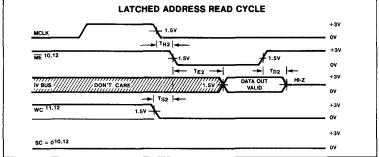
8X350 (T.S.)

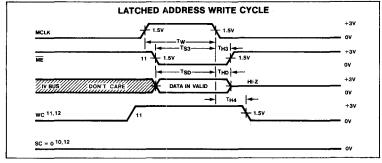
 DC ELECTRICAL CHARACTERISTICS2
 N8X350: 0° C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

 S8X350: -55° C \leq T_A \leq +125°C, 4.75V \leq V_{CC} \leq 5.25V

			N8X350			S8X350			
PARAMETER		TEST CONDITIONS	Min	Тур	Max	Min	Тур	.80 -1.2	V V
Input voltage VIL Low¹ VIH High¹ VIC Clamp¹,3		V _{CC} = Min V _{CC} = Max V _{CC} = Min, I _{IN} = -12mA	2.0		.85 -1.2	2.0			
V _{OL} VOH	Output voltage Low ^{1,4} High ^{1,5}	V _{CC} = Min I _{OL} = 9.6mA I _{OH} = -2mA	2.4		0.5	2.4		.5	V
IIL IIH	Input current Low High	V _{IN} = 0.45V V _{IN} = 5.5V			-100 25			-150 50	μΑ
los	Output current High Z state Short circuit ^{3,6}	ME = High, V _{OUT} = 5.5 V ME = High, V _{OUT} = 0.5 V SC = WC, ME = Low, V _{OUT} = 0V, Stored High	-20		40 -100 -70	-15		60 -100 -85	μΑ μΑ mA
Icc	V _{CC} supply current ⁷	V _{CC} = Max			185			200	m/
C _{IN} C _{OUT}	Capacitance Input Output	ME = High, V _{CC} = 5.0V V _{IN} = 2.0V V _{OUT} = 2.0V		5 8			5 8		pF


AC ELECTRICAL CHARACTERISTICS 2.9 N8X350: $0^{\circ}\text{C} \le T_{A} \le +75^{\circ}\text{C}$, $4.75\text{V} \le \text{V}_{CC} \le 5.25\text{V}$ R₁ = 470Ω , R₂ = $1k\Omega$, C_L = 30pF S8X350: $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$, $4.75\text{V} \le \text{V}_{CC} \le 5.25\text{V}$


				N8X350			S8X350			
PARAMETER		то	FROM	Min Typ M		Max	Min	Тур	Max	UNIT
	Enable time									ns
TE1	Output	Data out	SC-		1	35		İ	40	
TE2	Output	Data out	ME-	1		35	l		40	
	Disable time			1						ns
T _{D1}	Output	Data out	sc+		İ	35			40	
T _{D2}	Output	Data out	ME+			35			40	ĺ
	Pulse width				1					ns
Tw	Master clock ⁸	İ		40			50			
	Setup and hold time									ns
TSA	Setup time	MCLK-	Address	30	ļ	ļ	40			
THA	Hold time	Address	MCLK-	5		1	10			
TSD	Setup time	MCLK-	Data in	35	ł		45		1	
THD	Hold time	Data in	MCLK-	5		İ	10			
TS3	Setup time	MCLK-	ME-	40	ŧ		50			
ТНЗ	Hold time	ME+	MCLK-	5		ļ	5			
TS1	Setup time	MCLK-	ME-	30			40		1	ĺ
T _{H2}	Hold time	ME-	MCLK-	5			5			
TS2	Setup time	ME-	SC-,WC-	0			5			
TH1	Hold time	sc-	MCLK-	5		1	5	}	\	1
T _{H4}	Hold time	wc-	MCLK-	5	ļ		5	ĺ		


Notes on following page.

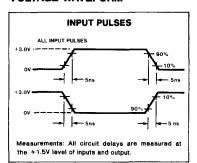
TIMING DIAGRAMS

NOTES

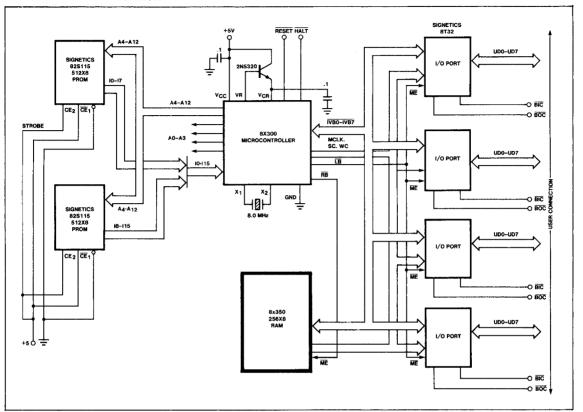
- 1. All voltage values are with respect to network ground terminal
- The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.

Typical thermal resistance values of the package at maximum temperature are:

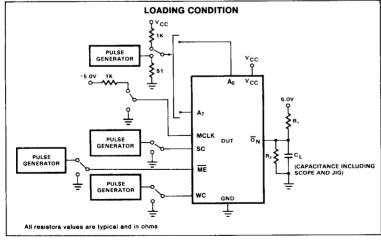
⊕ JA junction to ambient at 400fpm air flow - 50° C/watt


Θ_{JA} junction to ambient - still air - 90°C/watt Θ_{JA} junction to case - 20°C/watt

- 3. Test each pin one at a time.
- Measured with a logic low stored Output sink current is supplied through a resistor to
- Measured with a logic high stored.
- 6. Duration of the short circuit should not exceed 1 second.
- I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V and the output open.
- 8. Minimum required to guarantee a Write into the slowest bit.
- 9. Applied to the 8X300 based system with the data and address pins tied to the IV Bus.
- 10. SC + ME = 1 to avoid bus conflict.
- 11. WC + ME = 1 to avoid bus conflict.
- 12. The SC and WC outputs from the 8X300 are never at 1 simultaneously.


TIMING DEFINITIONS

- TS1 Required delay between beginning of Master Enable low and falling edge of Master Clock.
- TSA Required delay between beginning of valid address and falling edge of Master Clock.
- THA Required delay between falling edge of Master Clock and end of valid Address.
- TH1 Required delay between falling edge of Master Clock and when Select Command becomes low.
- TE1 Delay between beginning of Select Command low and beginning of valid data output on the IV Bus.
- T_{D1} Delay between when select Command becomes high and end of valid data output on the IV Bus.
- TH2 Required delay between falling edge of Master Clock and when Master Enable becomes low.
- TE2 Delay between when Master Enable becomes low and beginning of valid data output on the IV Bus.
- T_{D2} Delay between when Master Enable becomes high and end of valid data output on the IV Bus.
- TS2 Required delay between when Select Command or Write Command becomes low and when Master Enable becomes low.
- Tw Minimum width of the Master Clock pulse.
- T_{S3} Required delay between when Master Enable becomes low and falling edge of Master Clock.
- TH3 Required delay between falling edge of Master Clock and when Master Enable becomes high.
- T_{SD} Required delay between beginning of valid data input on the IV Bus and falling edge of Master Clock.
- THD Required delay between falling edge of Master Clock and end of valid data input on the IV Bus.
- TH4 Required delay between falling edge of Master Clock and when Write Command becomes low.


VOLTAGE WAVEFORM

TYPICAL 8X350 APPLICATION

TEST LOAD CIRCUIT

Signetics

