General Description

The MAX777L/MAX778L/MAX779L are pulse-skipping DC-DC converters that step up from low-voltage inputs (1V guaranteed). They require only three external components-an inductor (typically $22 \mu \mathrm{H}$) and two capacitors. The MAX777L delivers a 5 V output, the MAX778L generates pin-selectable voltages of 3.0 V or 3.3 V , and the MAX779L output can be adjusted from 2.5 V to 6 V through an external resistive divider.

The devices include an Active Rectifier ${ }^{T M}$ that eliminates the need for an external catch diode, and permits regulation even when the input is greater than the output. Also, unlike those in other step-up converters, the MAX777L/MAX778L/MAX779L's Active RectifierTM turns off in the shutdown mode, disconnecting the output from the source. This eliminates the current drain associated with conventional step-up converters when off or in shutdown.
High-frequency operation (up to 150 kHz) allows the use of small, surface-mount inductors with values of $10 \mu \mathrm{H}$ or less. Supply current is $190 \mu \mathrm{~A}$ under no load and only $20 \mu \mathrm{~A}$ in standby mode; supply voltage can range from 1 V to 4.5 V (1 to 3 cells). With a 2 V input, the devices typically deliver 200 mA at 5 V , or 300 mA at 3 V .
For fully specified devices designed for step-up/step-down applications (where the input can be above or below the output), refer to the MAX877L/MAX878L/MAX879L data sheet.

Applications

Single Battery-Cell (1V), Step-Up Voltage Conversion Efficient, High-Power Step-Up Regulation from Low Input Voltages
Pagers
Portable Instruments \& Hand-Held Terminals Notebook and Palmtop Computers

Typical Operating Circuit

Active Rectifier is a trademark of Maxim Integrated Products.

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 471 mW CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................. 640 mW Operating Temperature Ranges:
MAX77_LC_A $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX77 LE A
MAX77 LMJA $5^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) \qquad $+300^{\circ} \mathrm{C}$
Note 1: The output may be shorted to ground if the package power dissipation is not exceeded.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VIN}=+2.5 \mathrm{~V}, \mathrm{ILOAD}=0 \mathrm{~mA}, \mathrm{~L}=22 \mu \mathrm{H}\right.$, Cout $=100 \mu \mathrm{~F}, \overline{\mathrm{SHDN}}$ and ILIM connected to IN, AGND connected to PGND, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Minimum Start-Up Voltage	ILOAD $<10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 2)					1	V
Maximum Operating Voltage	(Notes 2, 3)			4.5			V
Output Voltage MAX777L/MAX779L (set to 5 V) (Note 6)		$\begin{aligned} & \text { MAX777LC/ } \\ & \text { MAX779LC } \end{aligned}$	$\begin{aligned} & \mathrm{ILOAD} \leq 30 \mathrm{~mA}, 1.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 4.5 \mathrm{~V} \text { or } \\ & \text { LOAD } \leq 140 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 4.5 \mathrm{~V} \end{aligned}$	4.80	5.00	5.20	V
		MAX777LE/ MAX779LE	$\begin{aligned} & \mathrm{ILOAD} \leq 30 \mathrm{~mA}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 4.5 \mathrm{~V} \text { or } \\ & \text { LOAD } \leq 130 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 4.5 \mathrm{~V} \end{aligned}$				
		MAX777LM/ MAX779LM	$\begin{aligned} & \mathrm{LOAD} \leq 25 \mathrm{~mA}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 4.5 \mathrm{~V} \text { or } \\ & \text { LOAD } \leq 120 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 4.5 \mathrm{~V} \end{aligned}$				
Output Voltage MAX778L (Note 6)	$\mathrm{SEL}=0 \mathrm{~V}$	MAX778LC	$\begin{aligned} & \mathrm{ILOAD} \leq 50 \mathrm{~mA}, 1.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.3 \mathrm{~V} \text { or } \\ & \text { LLOAD } \leq 210 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.3 \mathrm{~V} \end{aligned}$	3.17	3.30	3.43	V
		MAX778LE	$\begin{aligned} & \mathrm{ILOAD} \leq 50 \mathrm{~mA}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.3 \mathrm{~V} \text { or } \\ & \mathrm{L} \text { LOAD } \leq 200 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.3 \mathrm{~V} \end{aligned}$				
		MAX778LM	$\begin{aligned} & \mathrm{LOAD} \leq 50 \mathrm{~mA}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.3 \mathrm{~V} \text { or } \\ & \mathrm{LOAD} \leq 180 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.3 \mathrm{~V} \end{aligned}$				
	SEL = OPEN	MAX778LC	$\begin{aligned} & \mathrm{LOAD} \leq 50 \mathrm{~mA}, 1.1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V} \text { or } \\ & \mathrm{L} \text { LOAD } \leq 210 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V} \end{aligned}$	2.88	3.00	3.12	
		MAX778LE	$\begin{aligned} & \mathrm{LOAD} \leq 50 \mathrm{~mA}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V} \text { or } \\ & \mathrm{L}_{\mathrm{LOAD}} \leq 200 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V} \end{aligned}$				
		MAX778LM	$\begin{aligned} & \mathrm{LOAD} \leq 40 \mathrm{~mA}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V} \text { or } \\ & \mathrm{L} \text { LOAD } \leq 180 \mathrm{~mA}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V} \end{aligned}$				
Output Voltage Range (MAX779L)	(Note 4)			2.5		6.0	V
Efficiency	ILOAD $=100 \mathrm{~mA}$				82		\%
No-Load Supply Current	ILOAD $=0 \mathrm{~mA}$ (switch off)				190	310	$\mu \mathrm{A}$
Shutdown Supply Current	$\overline{\mathrm{SHDN}}=0 \mathrm{~V}$	MAX77_LC, MAX77_LE			20	30	$\mu \mathrm{A}$
		MAX77_LM			20	35	
$\overline{\text { SHDN }}$ Input Current	$\mathrm{OV}<\overline{\text { SHDN }}<\mathrm{VIN}$				15	100	nA
	$\mathrm{V}_{\mathrm{IN}}<\overline{\text { SHDN }}<5 \mathrm{~V}$				12	40	$\mu \mathrm{A}$

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VIN}=+2.5 \mathrm{~V}, \operatorname{ILOAD}=0 \mathrm{~mA}, \mathrm{~L}=22 \mu \mathrm{H}\right.$, Cout $=100 \mu \mathrm{~F}, \overline{\mathrm{SHDN}}$ and ILIM connected to IN, AGND connected to PGND, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { SHDN }}$ Threshold	VIN $=1 \mathrm{~V}$ to 4.5 V	$\mathrm{V}_{\mathrm{IN}} / 2+0.25$			V
	V IN $=2.5 \mathrm{~V}$	1.20		1.6	
$\overline{\text { SHDN }}$ Enable Delay		150			$\mu \mathrm{s}$
Current Limit		1.0			A
Current-Limit Temperature Coefficient		-0.3			\%/ ${ }^{\circ} \mathrm{C}$
Switch Saturation Voltage	Isw $=400 \mathrm{~mA}$		0.275		V
	ISW $=600 \mathrm{~mA}$		0.33		
	ISW $=1000 \mathrm{~mA}$		0.50		
Maximum Switch On Time	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		4.0		$\mu \mathrm{s}$
	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		5.9		
	VIN $=1 \mathrm{~V}$		12.6		
Minimum Switch Off Time	MAX777L, MAX779L		1.2		$\mu \mathrm{s}$
	MAX778		2.2		
Rectifier Forward Voltage Drop	ISW $=400 \mathrm{~mA}$		0.21		V
	Isw $=600 \mathrm{~mA}$		0.31		
	ISW $=1000 \mathrm{~mA}$	0.50			
Error-Comparator Trip Point	MAX779L, over operating input voltage (Note 5)	197.5	202.5	207.5	mV
FB Pin Bias Current	MAX779L, $\mathrm{V}_{\text {FB }}=0.3 \mathrm{~V}$		10	40	nA
Switch Off Leakage Current			0.1		$\mu \mathrm{A}$
Rectifier Off Leakage Current			0.1		$\mu \mathrm{A}$

Note 2: Output in regulation, VOUT = VOUT (nominal) $\pm 4 \%$.
Note 3: At high VIN to Vout differentials, the maximum load current is limited by the maximum allowable power dissipation in the package (see Absolute Maximum Ratings).
Note 4: Minimum value is production tested. Maximum value is guaranteed by design and is not production tested.
Note 5: Vout is set to a target value of +5 V by 0.1% external feedback resistors. Vout is measured to be $5 \mathrm{~V} \pm 2.5 \%$ to guarantee the error comparator trip point.
Note 6: Start-Up guaranteed under these load conditions.

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

(Typical Operating Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted).

M AX777L/MAX779L EFFICIENCY vs. LOAD CURRENT

MAX777LMAX779L MAXIMUM OUTPUT CURRENT vs. INPUT VOLTAGE

MAX778L
$\overline{\text { SHDN }}$ THRESHOLD VOLTAGE vs. INPUT VOLTAGE AND TEMPERATURE

MAX778L
EFFICIENCY vs. LOAD CURRENT

MAX778L MAXIMUM OUTPUT CURRENT vs. INPUT VOLTAGE

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOAD-TRANSIENT RESPONSE

2ms/div
A: IOUt, $200 \mathrm{~mA} /$ div, 0 mA to 200 mA
B: VOUT, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED

MAX778L, $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}$

SWITCHING WAVEFORMS, CONTINUOUS CONDUCTION

$5 \mu \mathrm{~s} / \mathrm{div}$
A: SWITCH VOLTAGE (LX PIN), 2V/div
B: INDUCTOR CURRENT, 0.5A/div
C: OUTPUT VOLTAGE RIPPLE, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED
MAX777L, $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$, IOUT $=100 \mathrm{~mA}$

LINE-TRANSIENT RESPONSE

$2 \mathrm{~ms} /$ div
A: $\mathrm{V}_{\mathrm{IN}}, 1 \mathrm{~V} / \mathrm{div}, 1.8 \mathrm{~V}$ to 3.3 V
B: Vout, $100 \mathrm{mV} / \mathrm{div}$, AC-COUPLED, IOUT $=240 \mathrm{~mA}$

MAX778L, Vout $=3.3 \mathrm{~V}$

SWITCHING WAVEFORMS, DISCONTINUOUS CONDUCTION

A: SWITCH VOLTAGE (LX PIN), 2V/div
B: INDUCTOR CURRENT, $0.5 \mathrm{~A} / \mathrm{div}$
C: OUTPUT VOLTAGE RIPPLE, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED
MAX777L, $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, IOUT $=70 \mathrm{~mA}$

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

Typical Operating Characteristics (continued)
(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	ILIM	Sets switch current-limit input. Connect to IN for 1A current limit. A resistor from ILIM to IN sets lower peak inductor currents.
2	IN	Input from battery
3	AGND	Analog ground. Not internally connected to PGND.
4	PGND	Power ground. Must be low impedance; solder directly to ground plane or star ground. Connect to AGND, close to the device.
5	LX	Collector of 1A NPN power switch and emitter of Active Rectifier PNP.
6	OUT	Voltage output. Connect filter capacitor close to pin.
7	$\overline{\text { SHDN }}$	Shutdown input disables power supply when low. Also disconnects load from input. Threshold is set at VIN/2.
8	N.C. (MAX777L)	No connect-not internally connected.SEL (MAX778L)
	FB (MAX779L)	Feedback input for adjustable-output operation. Connect to an external voltage divider between Vout and AGND.

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

Figure 1. MAX778L Block Diagram

Detailed Description

Operating Principle
The MAX777L/MAX778L/MAX779L combine a switchmode regulator with an NPN bipolar switch, current limit, precision voltage reference, and active rectifierall in a single monolithic device. In shutdown mode, the internal rectifier is completely turned off and disconnects the load from the source. Only two external components are required in addition to the input bypass capacitor: a $22 \mu \mathrm{H}$ inductor and a $100 \mu \mathrm{~F}$ filter capacitor.
A minimum off-time, current-limited, pulse-frequencymodulation (PFM) control scheme combines the advantages of pulse width modulation (PWM) (high output power and efficiency) with those of a traditional PFM pulse skipper (low quiescent currents).
External conditions (inductor value, load, and input voltage) determine the way the converter operates, as follows:

At light loads, the current through the inductor starts at zero, rises to a peak value, and drops down to zero in each cycle (discontinuous-conduction mode). In this case, the switching frequency is governed by a pair of one-shots that set a maximum on-time inversely proportional to VIN [toN $=8.8 /(\mathrm{VIN}-0.25)]$ and a minimum offtime $(1.3 \mu \mathrm{~s}$ for MAX777L/MAX779L and $2.3 \mu \mathrm{~s}$ for MAX778L). With a $22 \mu \mathrm{H}$ inductor, LX's peak current is about 400 mA and is independent of input voltage. Efficiency at light loads is improved because of lower peak currents.
At very light loads, more energy is stored in the coil than is required by the load in each cycle. The converter regulates by skipping entire cycles. Efficiency is typically 65% to 75% in the pulse-skipping mode. Pulse-skipping waveforms can be irregular, and the output waveform contains a low-frequency component. Larger, low equivalent series resistance (ESR) filter capacitors can help reduce the ripple voltage if needed.

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

At heavy loads above approximately 100 mA , the converter enters continuous-conduction mode, where current always flows in the inductor. The switch-on state is controlled cycle-by-cycle by either the maximum ton time or the switch's preset current limit. As a result, the switch's current rating is not exceeded and the inductor is not saturated. At very heavy loads, the inductor current self-oscillates between this peak current limit and some lower value governed by the minimum off-time, the inductance value, and the input/output differential.
With ILIM shorted to IN, the peak switch current of the internal NPN power switch is set to 1 A . The peak switch current can be set to a lower value by connecting a resistor between ILIM and IN (see Current Limit section). This enables the use of physically smaller inductors with lower saturation-current ratings. At 1A, the switch voltage drop (Vsw) is about 500 mV . Vsw decreases to about 250 mV at 0.1 A .
Conventional PWM converters generate constant-frequency switching noise, while this architecture produces variable-frequency switching noise. However, the noise does not exceed the current limit times the fil-ter-capacitor ESR, unlike conventional pulse-skippers.

Step-Down Mode If the input voltage exceeds the output voltage, the MAX777L/MAX778L/MAX779L behave as "switched" linear regulators. If the output voltage starts to drop, the switch turns on and energy is stored in the coil, as in normal step-up mode. After the switch turns off, the voltage at LX flies high. The active rectifier turns on when $L X$ rises above VIN . As in a linear regulator, the voltage difference between VIN and Vout appears across the rectifier (actually a PNP transistor) until the current goes to zero and the rectifier turns off. At high VIN to VOUT differentials, the maximum load current is limited by the maximum allowable power dissipation in the package. For fully specified buck/boost converters, refer to the data sheet for the pin-compatible MAX877L/MAX878L/MAX879L.

Active Rectifier

The internal active rectifier of the MAX777L/MAX778L/ MAX779L replaces the external Schottky catch diode in normal boost operation. The rectifier consists of a PNP pass transistor and a unique control circuit which, in shutdown mode, entirely disconnects the load from the source. This is a distinct advantage over standard boost topologies, since it prevents battery drain in shutdown.
The active rectifier also acts as a zero-dropout regulator if the input exceeds the regulated output. This allows the MAX777L/MAX778L/MAX779L to act as buck/boost
converters. Useful in battery-powered applications, where the battery voltage may initially exceed the output voltage, the converters will regulate down to the output voltage and seamlessly switch into boost mode as the input drops below the output voltage. The pin-compatible MAX877L/MAX878L/MAX879L are fully specified buck/boost converters with higher specified output currents than the MAX777L/MAX778L/MAX779L.

Shutdown

Shutdown ($\overline{\mathrm{SHDN}}$) is a high-impedance, active-low input. Connect SHDN to VIN for normal operation. Keeping SHDN at ground holds the converters in shutdown mode. Since the active rectifier is turned off in shutdown mode, the path from input to load is cut, and the output effectively drops to 0 V . The supply current in the shutdown state ranges from $4 \mu \mathrm{~A}$ at $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ to $50 \mu \mathrm{~A}$ at $\mathrm{V} \mathrm{VN}=4.5 \mathrm{~V}$. The shutdown circuit threshold is set nominally to $\mathrm{VIN} / 2+250 \mathrm{mV}$. When SHDN is below this threshold, the device is shut down and is enabled with $\overline{\text { SHDN }}$ above the threshold. When driven from external logic, $\overline{\text { SHDN }}$ can be driven to a higher voltage than ViN.

Current Limit

Connecting ILIM to IN sets an LX current limit of 1 A . For smaller output power levels that do not require the maximum peak current, the peak inductor current can be reduced to optimize overall efficiency and to allow very small, low-cost coils with lower current ratings. See also the Inductor Selection section.
Reduce the MAX777L/MAX778L/MAX779L peak inductor current by connecting a resistor between ILIM and IN . See Figure 2 to select the resistor.

Figure 2. Current-Limit Resistor vs. Current Limit

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

Figure 3. MAX779L Adjustable Voltage

Output Voltage Selection

The output voltage of the MAX777L is fixed at 5V. The MAX778L output voltage can be set to 3 V by leaving the SEL pin open. Connect SEL to AGND for 3.3V operation.
The MAX779L's output voltage is set by two resistors, R1 and R2 (Figure 3), which form a voltage divider between the output and the FB pin. The output voltage can be set from 2.5 V to 6.0 V by the equation:

$$
\text { VOUT }=(0.2025)[(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2]
$$

To simplify the resistor selection:
R1 = (R2)[(VOUT/0.2025) - 1]

Since the input current at FB is 40 nA maximum, large values ($10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ for R2) can be used with no significant loss of accuracy. For 1\% error, the current through R2 should be at least 100 times FB's bias current.
When large values are used for the feedback resistors (R1 > $50 \mathrm{k} \Omega$), stray output impedance at FB can add "lag" to the feedback response, destabilizing the regulator and creating a larger ripple at the output. Lead lengths and circuit board traces at the FB node should be kept short. Reduce ripple by adding a "lead" compensation capacitor (C3, 100pF to 50 nF) in parallel with R1.

Applications Information

The Typical Operating Circuit shows a MAX777L stepup application circuit. This circuit starts up and operates with inputs ranging from 1.0 V to 4.5 V . Start-up time is a function of the load, typically less than 5 ms . Output current capability is a function of the input voltage. See Typical Operating Characteristics.

Inductor Selection

The $22 \mu \mathrm{H}$ inductor shown in the Typical Operating Circuit is sufficient for most MAX777L/MAX778L/ MAX779L designs. Other inductor values ranging from $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$ are also suitable. The inductor should have a saturation rating equal to or greater than the peak switch-current limit, which is 1 A without an external current limit (ILIM connected to IN). It is acceptable to operate the inductor at 120% of its saturation rating; however, this will reduce efficiency. For highest efficiency, use an inductor with a low DC resistance, preferably under 0.2Ω. Table 1 lists suggested inductor suppliers.

Capacitor Selection
The $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ surface-mount tantalum (SMT) output capacitor shown in the Typical Operating Circuit will provide a 20 mV output ripple or less, stepping up from 2 V to 3.3 V at 200 mA . Smaller capacitors, down to $10 \mu \mathrm{~F}$, are acceptable for light loads or in applications that tolerate higher output ripple. The input capacitor may be omitted if the input lead length is less than 2 inches $(5 \mathrm{~cm})$ or if the loads are small.
The primary factor in selecting both the output and input filter capacitor is low ESR. The ESR of both bypass and filter capacitors affects efficiency. Optimize performance by increasing filter capacitors or using specialized low-ESR capacitors. The smallest low-ESR SMT tantalum capacitors currently available are Sprague 595D or 695D series. Sanyo OS-CON organic semiconductor through-hole capacitors also exhibit very low ESR, are rated for the wide temperature range, and are particularly useful for operation at cold temperatures. Table 1 lists suggested capacitor suppliers.

Layout

The MAX777L/MAX778L/MAX779L's high peak currents and high-frequency operation make PC layout important for minimum ground bounce and noise. Locate input bypass and output filter capacitors close to the device pins. All connections to the FB pin (MAX779L) should also be kept as short as possible. A ground plane is recommended. Solder AGND (pin 3) and PGND (pin 4), directly to the ground plane. Refer to the MAX777L/MAX778L/MAX779L evaluation kit (EV kit) manual for a suggested surface-mount layout.

Low-Voltage Input, 3V/3.3V/5V/

Adjustable Output, Step-Up DC-DC Converters
Table 1. Component Suppliers

PRODUCTION METHOD		INDUCTORS	CAPACITORS
Surface Mount		Sumida CD54-220 $(22 \mu \mathrm{H})$ Murata-Erie LQHYN1501K04M00-D5 $(15 \mu \mathrm{H})$ Coiltronics CTX20-1	Sprague 595D Sprague 695D Matsuo 267 series AVX TPS series
Miniature Through-Hole		$\begin{aligned} & \hline \text { Sumida } \\ & \text { RCH654-220 } \end{aligned}$	Sanyo OS-CON low-ESR organic semiconductor
Low-Cost Through-Hole		$\begin{aligned} & \text { Coilcraft } \\ & \text { PCH-27-223 } \end{aligned}$	Nichicon PL series low-ESR electrolytic United Chemi-Con, LXF series
AVX	USA:	$\begin{aligned} & \text { (803) 946-0690 } \\ & \text { (800) 282-4975, } \end{aligned}$	
Coiltronics	USA:	(561) 241-7876,	9339
Matsuo	USA:	(714) 969-2491, F	6492
Murata-Erie	USA:	(814) 237-1431 (800) 831-9172, F	0490
Nichicon	USA:	(847) 843-7500	
Sanyo	USA:	(619) 661-6835, F	2798
	Japan:	(81) 7-2070-6306,	70-1174
Sprague	USA:	(603) 224-1961, F	1430
Sumida	USA:	(847) 956-0666, F	-0702
	Japan:	(81) 3-3607-5111,	07-5144
United Chemi-Con	USA:	(714) 255-9500, F	9400

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX778LCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX778LCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX778LC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX778LEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX778LESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX778LMJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX779LCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX779LCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX779LC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX779LEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 8 Plastic DIP
MAX779LESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX779LMJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

* Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only.
**Contact factory for availability and processing to MIL-STD-883.
\qquad Chip Topography

TRANSISTOR COUNT: 170;
SUBSTRATE CONNECTED TO AGND.

Low-Voltage Input, 3V/3.3V/5V/ Adjustable Output, Step-Up DC-DC Converters

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	-	0.200	-	5.08
A1	0.015	-	0.38	-
A2	0.125	0.175	3.18	4.45
A3	0.055	0.080	1.40	2.03
B	0.016	0.022	0.41	0.56
B1	0.045	0.065	1.14	1.65
C	0.008	0.012	0.20	0.30
D1	0.005	0.080	0.13	2.03
E	0.300	0.325	7.62	8.26
E1	0.240	0.310	6.10	7.87
e	0.100	-	2.54	-
eA	0.300	-	7.62	-
eB	-	0.400	-	10.16
L	0.115	0.150	2.92	3.81

Plastic DIP

PKG.	DIM	PINS	INCHES		MILLIMETERS	
			MIN	MAX	MIN	MAX
P	D	8	0.348	0.390	8.84	9.91
P	D	14	0.735	0.765	18.67	19.43
P	D	16	0.745	0.765	18.92	19.43
P	D	18	0.885	0.915	22.48	23.24
P	D	20	1.015	1.045	25.78	26.54
N	D	24	1.14	1.265	28.96	32.13

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
E	0.150	0.157	3.80	4.00
e	0.050		1.27	
H	0.228	0.244	5.80	
L	0.016	0.050	0.40	1.27

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	0.189	0.197	4.80	5.00
D	14	0.337	0.344	8.55	8.75
D	16	0.386	0.394	9.80	10.00
$21-0041 \mathrm{~A}$					

Narrow SO SMALL-OUTLINE PACKAGE
(0.150 in.)

21-0041A

