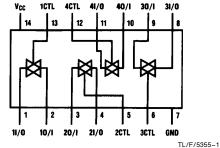


MM54HC4066/MM74HC4066 Quad Analog Switch

General Description

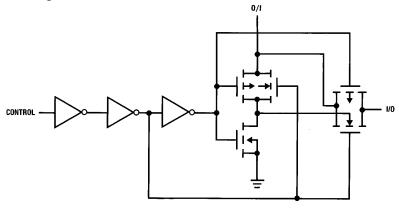

These devices are digitally controlled analog switches utilizing advanced silicon-gate CMOS technology. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and visa-versa. Also the '4066 switches contain linearization circuitry which lowers the "on" resistance and increases switch linearity. The '4066 devices allow control of up to 12V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when low. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Features

- Typical switch enable time: 15 ns
- Wide analog input voltage range: 0-12V
- Low "on" resistance: 30 typ. ('4066)
- Low quiescent current: 80 µA maximum (74HC)
- Matched switch characteristics
- Individual switch controls

Connection Diagram

Dual-In-Line Package


Top View

Order Number MM54HC4066 or MM74HC4066

Truth Table

Input	Switch				
CTL	1/0-0/1				
L	"OFF"				
Н	"ON"				

Schematic Diagram

TL/F/5355-2

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

 $\begin{array}{lll} \textbf{Offlice/Distributors for availability and specifications.} \\ \textbf{Supply Voltage (V_{CC})} & -0.5 \text{ to } +15 \text{V} \\ \textbf{DC Control Input Voltage (V_{IN})} & -1.5 \text{ to } \text{V}_{CC} +1.5 \text{V} \\ \textbf{DC Switch I/O Voltage (V_{IO})} & \text{V}_{EE} -0.5 \text{ to } \text{V}_{CC} +0.5 \text{V} \\ \end{array}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L) (Soldering 10 seconds)

260°C

Max Units Supply Voltage (V_{CC}) DC Input or Output Voltage 0 V_{CC} ٧ (V_{IN}, V_{OUT}) Operating Temp. Range (TA) MM74HC -40 +85°C MM54HC -55+125°C Input Rise or Fall Times

1000

500

400

ns

ns

ns

Operating Conditions

 $V_{CC} = 2.0V$

 $V_{CC} = 4.5V$ $V_{CC} = 9.0V$

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 9.0V 12.0V		1.5 3.15 6.3 8.4	1.5 3.15 5.3 8.4	1.5 3.15 6.3 8.4	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 9.0V 12.0V		0.5 1.35 2.7 3.6	0.5 1.35 2.7 3.6	0.5 1.35 2.7 3.6	V V V
R _{ON}	Maximum "ON" Resistance (See Note 5)	$V_{CTL} = V_{IH}$, $I_S = 2.0$ mA $V_{IS} = V_{CC}$ to GND (Figure 1)	4.5V 9.0V 12.0	100 50 30	170 85 70	200 105 85	220 110 90	Ω Ω
		$V_{CTL} = V_{IH}$, $I_S = 2.0$ mA $V_{IS} = V_{CC}$ or GND (Figure 1)	2.0V 4.5V 9.0V 12.0V	120 50 35 20	180 80 60 40	215 100 75 60	240 120 80 70	Ω Ω Ω
R _{ON}	Maximum "ON" Resistance Matching	V _{CTL} = V _{IH} V _{IS} = V _{CC} to GND	4.5V 9.0V 12.0V	10 5 5	15 10 10	20 15 15	20 15 15	Ω Ω
I _{IN}	Maximum Control Input Current	V _{IN} =V _{CC} or GND V _{CC} =2-6V			±0.1	±1.0	±1.0	μΑ
I _{IZ}	Maximum Switch "OFF" Leakage Current	$V_{OS} = V_{CC}$ or GND $V_{IS} = GND$ or V_{CC} $V_{CTL} = V_{IL}$ (Figure 2)	6.0V 9.0V 12.0V	10 15 20	±60 ±80 ±100	±600 ±800 ±1000	± 600 ± 800 ± 1000	nA nA nA
I _{IZ}	Maximum Switch "ON" Leakage Current	$V_{IS} = V_{CC}$ to GND $V_{CTL} = V_{IH}$ (Figure 3) $V_{OS} = OPEN$	6.0V 9.0V 12.0V	10 15 20	±40 ±50 ±60	±150 ±200 ±300	± 150 ± 200 ± 300	nA nA nA
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V 9.0V 12.0V		2.0 4.0 8.0	20 40 80	40 80 160	μΑ μΑ μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

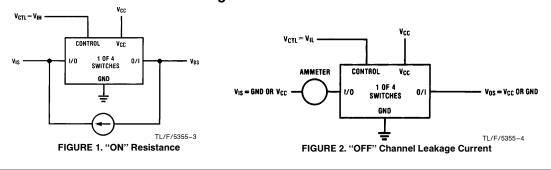
Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case on resistance (R_{ON}) occurs for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

Note 5: At supply voltages (V_{CC}-GND) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

^{**} V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics


 V_{CC} =2.0V-6.0V V_{EE} =0V-12V, C_L =50 pF (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation Delay Switch In to Out		2.0V 4.5V 9.0V 12.0V	25 5 4 3	50 10 8 7	30 13 10 11	75 15 12 13	ns ns ns
t _{PZL} , t _{PZH}	Maximum Switch Turn "ON" Delay	$R_L = 1 \text{ k}\Omega$	2.0V 4.5V 9.0V 12.0V	30 12 6 5	100 20 12 10	125 25 15 13	150 30 18 15	ns ns ns ns
tpHZ, tpLZ	Maximum Switch Turn "OFF" Delay	$R_L = 1 \text{ k}\Omega$	2.0V 4.5V 9.0V 12.0V	60 25 20 15	168 36 32 30	210 45 40 38	252 54 48 45	ns ns ns
	Minimum Frequency Response (Figure 7) 20 $\log(V_0/V_1) = -3$ dB	$R_L = 600\Omega$ $V_{IS} = 2 V_{PP} \text{ at } (V_{CC}/2)$ (Notes 6 & 7)	4.5V 9.0V	40 100				MHz MHz
	Crosstalk Between any Two Switches (Figure 8)	R _L =600Ω, F=1 MHz (Notes 7 & 8)	4.5V 9.0V	-52 -50				dB dB
	Peak Control to Switch Feedthrough Noise (Figure 9)	$R_L = 600\Omega, F = 1 \text{ MHz}$ $C_L = 50 \text{ pF}$	4.5V 9.0V	100 250				mV mV
	Switch OFF Signal Feedthrough Isolation (Figure 10)	$\begin{array}{l} R_L = 600\Omega, F = 1 \text{MHz} \\ V_{(CT)} V_{IL} \\ (\text{Notes 7 \& 8}) \end{array}$	4.5V 9.0V	-42 -44				dB dB
THD	Total Harmonic Distortion (Figure 11)	$R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF},$ F = 1 kHz $V_{IS} = 4 V_{PP}$ $V_{IS} = 8 V_{PP}$	4.5V 9.0V	.013				%
C _{IN}	Maximum Control Input Capacitance			5	10	10	10	pF
C _{IN}	Maximum Switch Input Capacitance			20				pF
C _{IN}	Maximum Feedthrough Capacitance	V _{CTL} =GND		0.5				pF
C _{PD}	Power Dissipation Capacitance			15				pF

Note 6: Adjust 0 dBm for F = 1 kHz (Null R_L/R_{ON} Attenuation).

 $\label{eq:Note 7: VIS} \mbox{Note 7: } V_{IS} \mbox{ is centered at $V_{CC}/2$.} \mbox{Note 8: } \mbox{Adjust input for 0 dBm.}$

AC Test Circuits and Switching Time Waveforms

AC Test Circuits and Switching Time Waveforms (Continued)

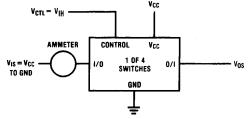
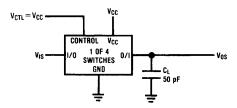
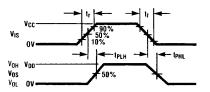
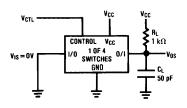
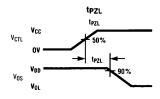




FIGURE 3. "ON" Channel Leakage Current


TL/F/5355-5


TL/F/5355-6

TL/F/5355-7

TL/F/5355-8

FIGURE 4. t_{PHL} , t_{PLH} Propagation Delay Time Signal Input to Signal Output

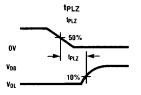
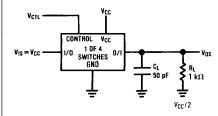
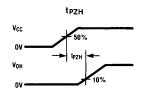




FIGURE 5. t_{PZL}, t_{PLZ} Propagation Delay Time Control to Signal Output

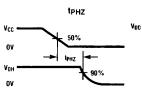


FIGURE 6. $t_{\mbox{\scriptsize PZH}}, t_{\mbox{\scriptsize PHZ}}$ Propagation Delay Time Control to Signal Output

FIGURE 7. Frequency Response

TL/F/5355-19

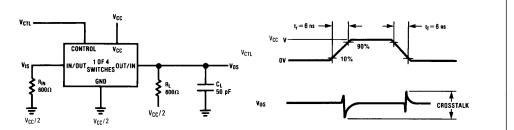


FIGURE 8. Crosstalk: Control Input to Signal Output

TL/F/5355-9

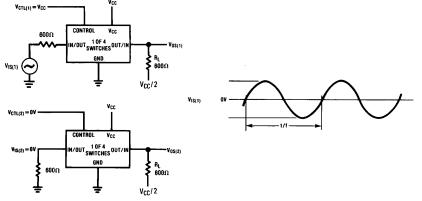
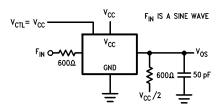
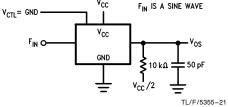
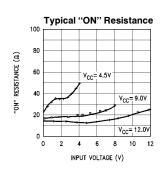
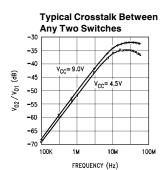




FIGURE 9. Crosstalk Between Any Two Switches

TL/F/5355-10





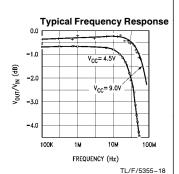

TL/F/5355-20 FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON resistance).

Physical Dimensions inches (millimeters) 0.785 (19.939) MAX [14] [13] [12] [11] [10] [9] [8] 0.025 (0.635) RAD 0.220-0.310 (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.005 0.200 (D.127) MIN GLASS SEALANT (5.080) MAX 0.020-0.060 (7.366-8.128) 0.060 ±0.005 (1.524 ±0.127) 0.180 (0.508 - 1.524)MA 0.008-0.012 10° MAX (0.203-D.305) 0.310-0.410 D.018 ±0.003 0.125-0.200 0.098 (7.874 - 10.41)(0.457 ±0,076) (3.175-5.080) (2.489) MAX BOTH ENDS 0.100 ±0.010 0.150 (3.81) J14A (REV G) MIN Order Number MM54HC4066J or MM74HC4066J NS Package J14A 14 13 12 11 10 9 1 2 3 4 5 6 7 0.092 (2.337) DIA 0.030 MAX (0.762) DEPTH 0.300 - 0.320 (7.620 - 8.128) 0.014 - 0.023 (0.356 - 0.584) TYP 0.050 ± 0.010 (1.270 - 0.254) TYF Order Number MM74HC4066N NS Package N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408