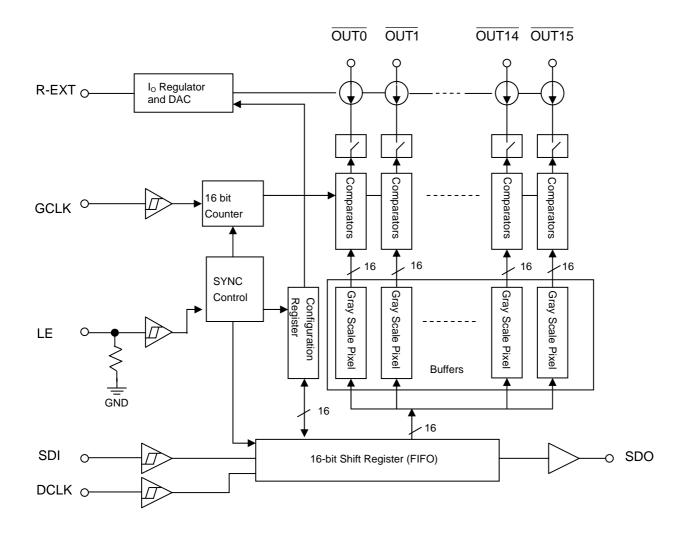
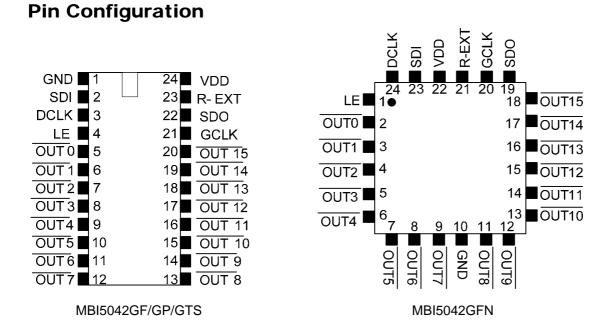


16-Channel Constant Current LED Driver With 16-bit PWM Control

Features

- Backward compatible with MBI5026 and MBI5030 in package
- 16 constant-current output channels
- 16-bit color depth PWM control
- Scrambled-PWM technology to improve refresh rate
- 6-bit programmable output current gain
- Constant output current range: 2~45mA
 2~45mA at 5.0V supply voltage
 2~30mA at 3.3V supply voltage
- Output current accuracy: Between channels: <±1.5% (typ.), and Between ICs: <±3.0% (typ.)
- Staggered delay of output, preventing from current surge
- Maximum data clock frequency: 30MHz
- Schmitt trigger input
- 3.0V-5.5V supply voltage

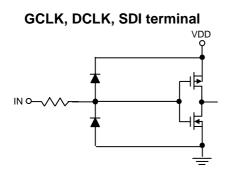


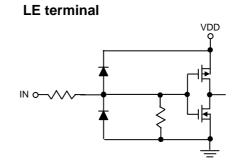

Product Description

MBI5042 is designed for LED video applications using internal Pulse Width Modulation (PWM) control with selectable 16-bit color depth. MBI5042 features a 16-bit shift register which converts serial input data into each pixel gray scale of output port. At MBI5042 output port, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs with a wide range of V_F variations. The output current can be preset through an external resistor. Moreover, the preset current of MBI5042 can be further programmed to 64 gain steps for LED global brightness adjustment.

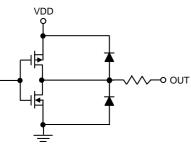
With Scrambled-PWM (S-PWM) technology, MBI5042 enhances Pulse Width Modulation by scrambling the "on" time into several "on" periods. The enhancement equivalently increases the visual refresh rate. When building a 16-bit color depth video, S-PWM reduces the flickers and improves the fidelity. MBI5042 offloads the signal timing generation of the host controller which just needs to feed data into drivers. MBI5042 drives the corresponding LEDs to the brightness specified by image data. With MBI5042, all output channels can be built with 16-bit color depth (65,536 gray scales). Each LED's brightness can be calibrated enough from minimum to maximum brightness with compensated gamma correction or LED deviation information inside the 16-bit image data.

Block Diagram





Terminal Description


Pin Name	Function
GND	Ground terminal for control logic and current sink
SDI	Serial-data input to the shift register
DCLK	Clock input terminal used to shift data on rising edge and carries command information when LE is asserted
LE	Data strobe terminal and controlling command with DCLK
$\overline{OUT0} \sim \overline{OUT15}$	Constant current output terminals
GCLK	Gray scale clock terminal Clock input for gray scale. The gray scale display is counted by gray scale clock comparing with input data
SDO	Serial-data output to the receiver-end SDI of next driver IC
R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
VDD	3.3V/5V supply voltage terminal

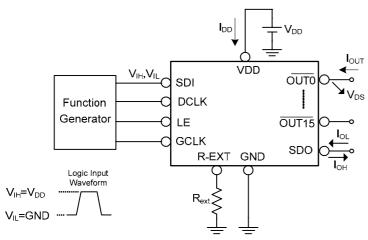
Equivalent Circuits of Inputs and Outputs

SDO terminal

Maximum Rating

Cha	racteristic	Symbol	Rating	Unit
Supply Voltage		V _{DD}	0~7	V
Input Pin Voltage (SDI, I	LE, DCLK, GCLK)	V _{IN}	-0.4~V _{DD} +0.4	V
Output Current (OUT0 -	- OUT15)	Ι _{ουτ}	+50	mA
Sustaining Voltage at C	OUT Port	V _{DS}	-0.5~17	V
GND Terminal Current		I _{GND}	+720	mA
Power Dissipation (On PCB, Ta=25°C)	GF Type GP Type GTS Type GFN Type	P _D	2.52 2.03 3.53 3.12	W
Thermal Resistance (On PCB, Ta=25°C)	GF Type GP Type GTS Type GFN Type	R _{th(j-a)}	49.69 61.56 35.45 40.01	°C/W
Operating Temperature	9	T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
ESD Poting	HBM (MIL-STD-883G Method 3015.7, Human Body Mode)	-	8000V	-
ESD Rating	MM (JEDEC EIA/JESD22-A115, Machine Mode)	-	400V	-

Characte	eristics	Symbol	Conc	dition	Min.	Тур.	Max.	Unit
Supply Voltag	e	V _{DD}		-	4.5	5.0	5.5	V
Sustaining Voltage at OUT Ports		V _{DS}	OUT0~ OUT15		-	-	17.0	V
		I _{OUT}	Refer to "Test C "Electrical Chara	2	-	45	mA	
Output Current		I _{ОН}	SDO	-	-	-1.0	mA	
		I _{OL}	SDO		-	-	1.0	mA
Input Voltage	"H" level	V _{IH}	Ta=-40~85°C		$0.7 \mathrm{xV}_{\mathrm{DD}}$	-	V _{DD}	V
input voitage	"L" level	V _{IL}	Ta=-40~85°C	GND	-	$0.3 \mathrm{xV}_{\mathrm{DD}}$	V	
Output Leakag	e Current	I _{OH}	V _{DS} =17.0V		-	-	0.5	μA
	V _{OL}		I _{OL} =+1.0mA	-	-	0.4	V	
Output Voltage	SDO	V _{OH}	H I _{OH} =-1.0mA		4.6	-	-	V
		dl _{out}	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7KΩ	-	±1.5	±3.0	%
Current Skew (Current Skew (Channel)		I _{OUT} =25mA V _{DS} =1.0V	R _{ext} =560Ω	-	±1.5	±3.0	%
Current Skew (di	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7KΩ	-	±3.0	±6.0	%
Current Skew ((C)	dl _{out2}	I _{OUT} =25mA V _{DS} =1.0V	R _{ext} =560Ω	-	±3.0	±6.0	%
Output Current Output Voltage		%/dV _{DS}	V_{DS} within 1.0V a R_{ext} =560 Ω @25n		-	±0.1	±0.3	% / V
Output Current Supply Voltage		$%/dV_{DD}$	V_{DD} within 4.5V a	and 5.5V	-	±1.0	±2.0	% / V
Pull-down Res	stor	R _{IN} (down)	LE		250	450	800	KΩ
		I _{DD} (off) 1	R _{ext} =Open, OU	TTO ~ OUT15 =Off	-	1.8	5.0	
	"Off"	I _{DD} (off) 2	R_{ext} =560 Ω , \overline{OU}	-	4.0	8.0		
Supply Current		I _{DD} (off) 3	$R_{ext}=360\Omega, \overline{OU}$	TO ~ OUT15 =Off	-	6.0	10.0	mA
	"ᢕ~"	I _{DD} (on) 1	R_{ext} =560 Ω , \overline{OU}	T0 ~ OUT15 =On	-	4.2	8.0	
	"On"	I _{DD} (on) 2	R _{ext} =360Ω, <u></u> 00	TTO ~ OUT15 =On	-	6.3	10.0	


Electrical Characteristics (V_{DD}=5.0V)

*One channel on.

Characte	eristics	Symbol	Conc	lition	Min.	Тур.	Max.	Unit
Supply Voltage	Э	V _{DD}		-	3.0	3.3	3.6	V
Sustaining Vol Ports	tage at OUT	V _{DS}	OUT0~ OUT15	5	-	-	17.0	V
		I _{OUT}	Refer to "Test Circuit for "Electrical Characteristics"		2	-	30	mA
Output Current		I _{ОН}	SDO		-	-	-1.0	mA
		I _{OL}	SDO	-	-	1.0	mA	
Input Voltaga	"H" level	V _{IH}	Ta=-40~85ºC		$0.7 \mathrm{xV}_{\mathrm{DD}}$	-	V _{DD}	V
Input Voltage	"L" level	V _{IL}	Ta=-40~85⁰C		GND	-	$0.3 \mathrm{xV}_{\mathrm{DD}}$	V
Output Leakage	e Current	I _{ОН}	V _{DS} =17.0V		-	-	0.5	μA
	SDO	V _{OL}	I _{OL} =+1.0mA	-	-	0.4	V	
Output Voltage	V		I _{OH} =-1.0mA		2.9	-	-	V
Current Skew (Channel)		dl _{out}	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7KΩ	-	±1.5	±3.0	%
		dl _{out}	I _{OUT} =25mA V _{DS} =1.0V	R _{ext} =560Ω	-	±1.5	±3.0	%
Current Skow (dl _{out2}	I _{OUT} =2mA V _{DS} =1.0V	R _{ext} =7KΩ	-	±3.0	±6.0	%
Current Skew (IC)	dl _{OUT2}	I _{OUT} =25mA V _{DS} =1.0V	R _{ext} =560Ω	-	±3.0	±6.0	%
Output Current Output Voltage	Regulation	$%/dV_{DS}$	V_{DS} within 1.0V a R_{ext} =560 Ω @25n		-	±0.1	±0.3	% / V
Output Current Supply Voltage		$%/dV_{DD}$	V_{DD} within 3.0V a	and 3.6V	-	±1.0	±2.0	% / V
Pull-down Resi				250	450	800	KΩ	
		I _{DD} (off) 1	R _{ext} =Open, OU	T0 ~ OUT15 =Off	-	1.6	5.0	
	"Off"	I _{DD} (off) 2	R_{ext} =560 Ω , \overline{OU}	T0 ~ OUT15 =Off	-	3.8	8.0	
Supply Current		I _{DD} (off) 3	$R_{ext}=360\Omega$, $\overline{OUT0} \sim \overline{OUT15} = Off$		-	5.6	10.0	mA
	"On"	I _{DD} (on) 1	$R_{ext}=560\Omega, \overline{OU}$	T0 ~ OUT15 =On	-	4.0	8.0	
	Un	I _{DD} (on) 2	R _{ext} =360Ω, <u>OU</u>	T0 ~ OUT15 =On	-	6.0	10.0	

Electrical Characteristics (V_{DD}=3.3V)

Test Circuit for Electrical Characteristics

Switching Characteristics (V_{DD} =5.0V)

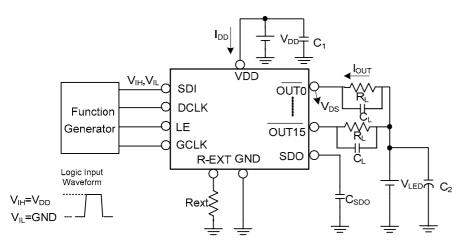
(Test condition: Ta=25°C)

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
	SDI - DCLK			1	-	-	ns
Setup Time	LE – DCLK	t _{SU1}		1	-	-	ns
	LE – DCLK	t _{SU2}		5	-	-	ns
	DCLK - SDI	t _{HO}		3	-	-	ns
Hold Time	DCLK - LE	t _{H1}		7	-	-	ns
	DCLK - SDO	t _{PD0}	V _{DD} =5.0V V _{IH} =V _{DD}	-	25	33	ns
Propagation Delay Time	GCLK – OUT4n *	t _{PD1}	V _{IL} =GND	-	25	-	ns
	LE – SDO**	t _{PD2}	R _{ext} =700Ω V _{DS} =1V	-	30	40	ns
	$\overline{OUT4n+1}*$	t _{DL1}	R _L =200Ω C _L =10pF	-	5	-	ns
Staggered Delay of Output	$\overline{OUT4n+2}$ *	t _{DL2}	C ₁ =100nF	-	10	-	ns
	$\overline{OUT4n+3}*$	t _{DL3}	C ₂ =10µF C _{SDO} =10pF	-	15	-	ns
	LE	t _{w(L)}		5	-	-	ns
Pulse Width	DCLK	t _{w(DCLK)}		15	-	-	ns
	GCLK			15	-	-	ns
Output Rise Time of Output Ports		t _{OR}		9	15	-	ns
Output Fall Time of Outpu	Output Fall Time of Output Ports			10	17	-	ns
Data Clock Frequency		F _{DCLK}		-	-	30	MHz
Gray Scale Clock Freque	ncy***	F _{GCLK}		-	-	33	MHz

* Refer to the Timing Waveform, where n=0, 1, 2, 3.

In timing of "Read Configuration", the next DCLK rising edge should be t_{PD2} after the falling edge of LE. *With uniform output current.

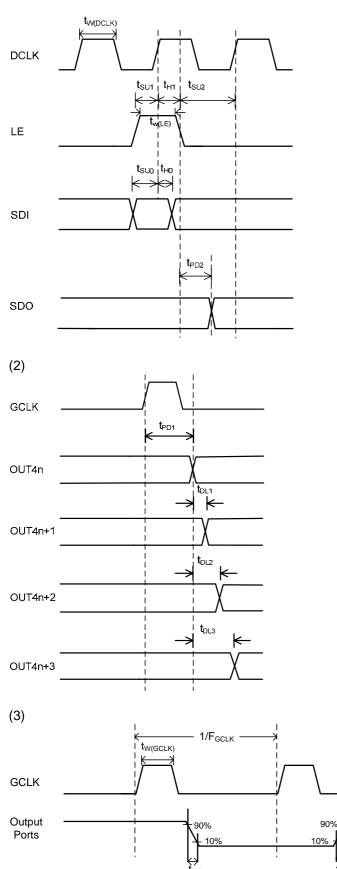
Switching Characteristics (V_{DD}=3.3V)

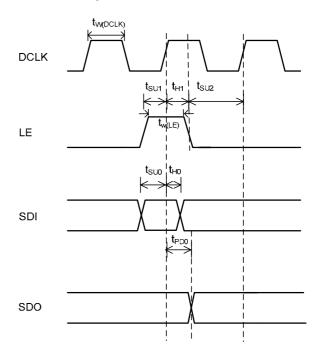

(Test condition: Ta=25°C)

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
	SDI - DCLK	t _{SU0}		1	-	-	ns
Setup Time	LE – DCLK	t _{SU1}		1	-	-	ns
	LE – DCLK	t _{SU2}		5	-	-	ns
Hold Time	DCLK - SDI	t _{HO}		3	-	-	ns
Hold Time	DCLK - LE	t _{H1}		7	-	-	ns
	DCLK – SDO	t _{PD0}	V _{DD} =3.3V V _{IH} =V _{DD}	-	30	40	ns
Propagation Delay Time	GCLK – OUT4n *	t _{PD1}	V _{IL} =GND	-	30	-	ns
	LE – SDO**	t _{PD2}	R _{ext} =700Ω V _{DS} =1V	-	40	50	ns
	$\overline{OUT4n+1}*$	t _{DL1}	R _L =200Ω	-	8	-	ns
Staggered Delay of Output	$\overline{OUT4n+2}$ *	t _{DL2}	C _L =10pF C₁=100nF	-	16	-	ns
	$\overline{OUT4n+3}$ *	t _{DL3}	C ₂ =10µF C _{SDO} =10pF	-	24	-	ns
	LE	t _{w(L)}		5	-	-	ns
Pulse Width	DCLK	t _{w(DCLK)}		20	-	-	ns
	GCLK	t _{w(GCLK)}		20	-	-	ns
Output Rise Time of Output Ports		t _{OR}		10	17	-	ns
Output Fall Time of Output Ports		t _{OF}		20	30	-	ns
Data Clock Frequency		F _{DCLK}		-	-	25	MHz
Gray Scale Clock Freque	ncy***	F _{GCLK}		-	-	20	MHz

* Refer to the Timing Waveform, where n=0, 1, 2, 3.

In timing of "Read Configuration", the next DCLK rising edge should be t_{PD2} after the falling edge of LE. *With uniform output current.

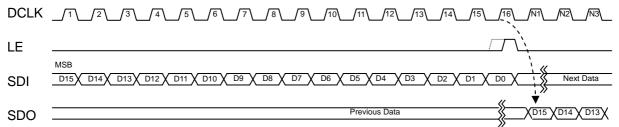

Test Circuit for Switching Characteristics


Timing Waveform

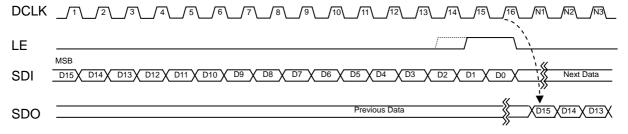
(1)

Timing Waveform for Read Configuration

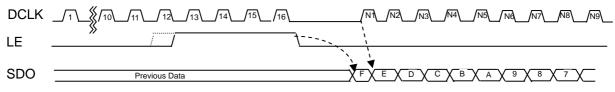
Timing Waveform for Data Latch and Global Latch


k≯ t_{oR}

Principle of Operation

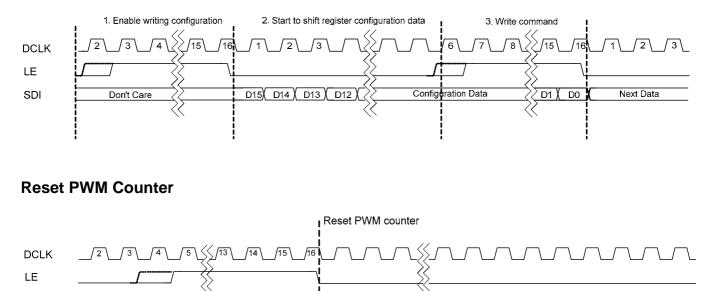

Control Command

	Signal	s Combination	Description
Command Name	LE	Number of DCLK Rising Edge when LE is asserted	The Action after a Falling Edge of LE
Data Latch	High	0 or 1	Serial data are transferred to the buffers
Global Latch	High	2 or 3	Buffer data are transferred to the comparators
Read Configuration	High	4 or 5	Move out "configuration register" to the shift registers
Write Configuration	High	10 or 11	Serial data are transferred to the "configuration register" if the "Enable Writing Configuration" is sent in prior
Reset PWM Counter	High	12 or 13	If bit "B" of the configuration register is set to "1", this command will reset PWM counter.
Enable Writing Configuration	High	14 or 15	Enable to writing configuration. It should be sent before writing configuration every time


Data Latch

Global Latch

Read Configuration



GCLK OUT0~15

Output ports are switching according to

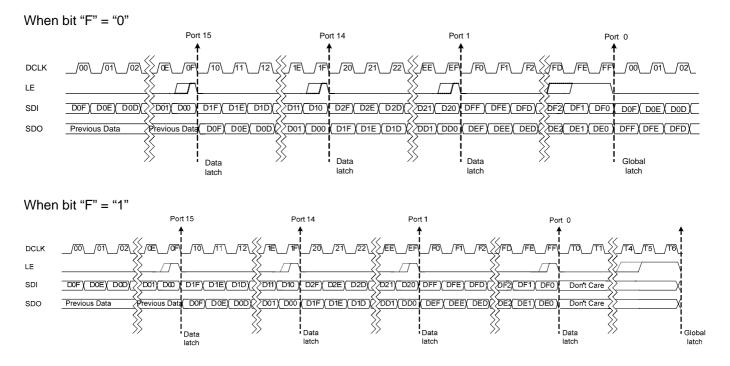
previous data value again

Write Configuration

Setting Gray Scales of Pixels

MBI5042 implements the gray level of each output port using the S-PWM control algorithm. With the 16-bit data, all output channels can be built with 65,536 gray scales.

There are two methods to issue the "global latch" command.


Output ports are switching

according to previous data value

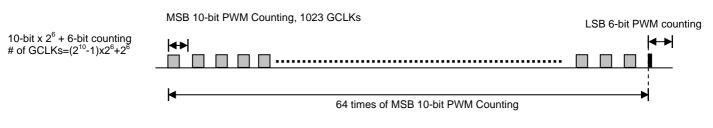
1. When configuration bit "F" is set to "0" (Default), the 16-bit input shift register latches 15 times of the gray scale data into each data buffer with a "data latch" command sequentially. With a "global latch" command for the 16th gray scale data, the data will be clocked in with the MSB first, loading the data from port 15 to port 0.

2. When configuration bit "F" is set to "1", the 16-bit input shift register latches 16 times of the gray scale data into each data buffer with a "data latch" command sequentially. With a "global latch" command for additional latch, the data will be clocked in with the MSB first, loading the data from port 15 to port 0.

Full Timing for Data Loading

The sequence of output ports is from port 15 to port 0; the sequence of bits is from bit 15 to bit 0. DCLK: "00" represents the 0 DCLK of port 15; "FF" represents the 15 DCLK of port 0.

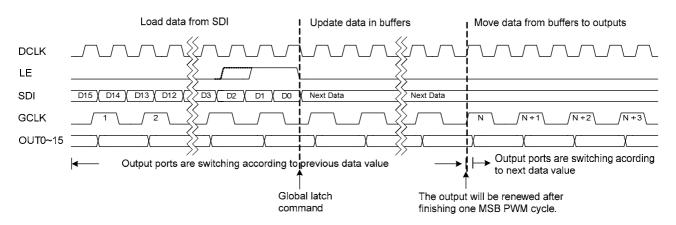
SDI: "D0F" represents the MSB SDI of port 15; "DF0" represents the LSB SDI of port 0.

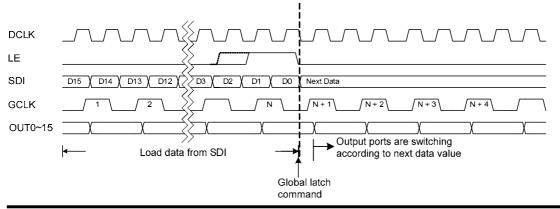

Definition of Configuration Register

MSB															LSB
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
e.g l	Default	Value													
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0			6'b10	01011			0	0	0	0

Bit	Attribute	Definition	Value	Function
F	Read/Write	Data loading	0 (Default)	15 times of "data latch" + 1 "global latch"
1	iteau/write	Data loading	1	16 times of "data latch" + 1 "global latch"
E~C	Read/Write	Reserved	Don't care	NA
			0 (Default)	Disable
В	Read/Write	PWM counter reset	1	Enable with 12 or 13 DCLKs (rising edge) when LE is
				asserted
		PWM data	0 (Default)	Auto-synchronization
А	Read/Write	synchronization	1	Manual synchronization
		mode		
9~4	Read/Write	Current gain	000000 ~	6'b101011 (Default)
3~4	iteau/Wille	adjustment	111111	
3~0	Read/Write	Reserved	Don't care	NA

The PWM Counting Mode

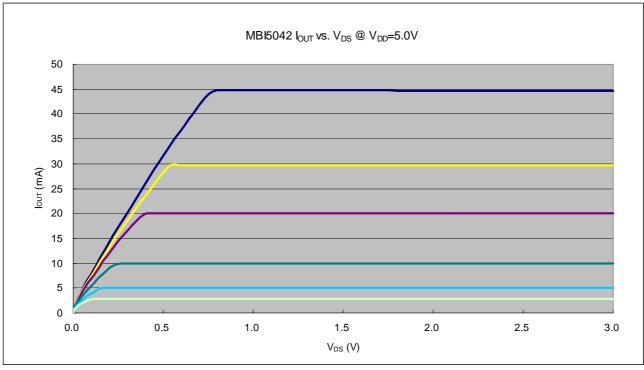

MBI5042 supports S-PWM, scrambled PWM, technology. With S-PWM, the total PWM cycles can be broken down into MSB (Most Significant Bits) and LSB (Least Significant Bits) of gray scale cycles, and the MSB information can be dithered across many refresh cycles to achieve overall same high bit resolution.


: Output ports are turned "on".

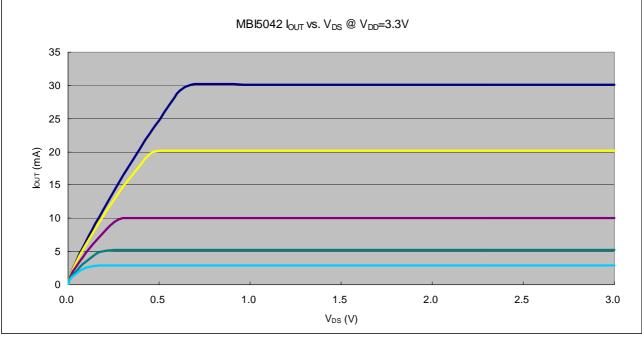
Synchronization for PWM Counting

Between the data frame and the video frame, when the bit "A" is set to "0" (Default), MBI5042 will automatically handle the synchronization of previous data and next data for PWM counting. The next image data will be updated to output buffers and start PWM counting when the previous data has finished one internal PWM cycle. It will prevent the lost count of image data resolution and guarantee the data accuracy. In this mode, system controller only needs to provide a continuous running GCLK for PWM counter. The output will be renewed after finishing one MSB PWM cycle.

When the bit "A" is set to "1", MBI5042 will update the next image data into output buffer immediately, no matter the counting status of previous image data is. In this mode, system controller will synchronize the GCLK according image data outside MBI5042 by itself. Otherwise, the conflict of previous image data and next image data will cause the data lost.

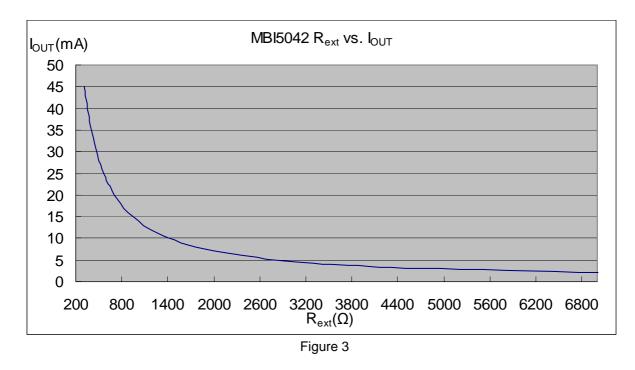


Constant Current

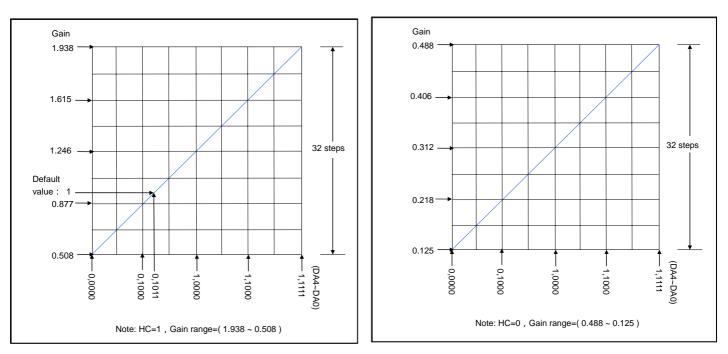

In LED display application, MBI5042 provides nearly no variation in current from channel to channel and from IC to IC. This can be achieved by:

1) The typical current variation between channels is less than 1.5%, and that between ICs is less than $\pm 3.0\%$.

2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (V_F). This guarantees LED to be performed on the same brightness as user's specification.



Setting Output Current


The output current (I_{OUT}) is set by an external resistor, R_{ext} . The default relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated from the equation:

 $V_{R-EXT}=0.61VoltxG; I_{OUT}=(V_{R-EXT}/R_{ext})x23$

Whereas R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is its voltage. G is the digital current gain, which is set by the bit9 – bit4 of the configuration register. The default value of G is 1. For your information, the output current is about 2mA when $R_{ext}=7K\Omega$ and 25mA when $R_{ext}=560\Omega$ if G is set to default value 1. The formula and setting for G are described in next section.

Current Gain Adjustment

The bit 9 to bit 4 of the configuration register set the gain of output current, i.e., G. As totally 6-bit in number, i.e., ranged from 6'b000000 to 6'b111111, these bits allow the user to set the output current gain up to 64 levels. These bits can be further defined inside Configuration Register as follows:

F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	HC	DA4	DA3	DA2	DA1	DA0	-	-	-	-

1. Bit 9 is HC bit. The setting is in low current band when HC=0, and in high current band when HC=1.

2. Bit 8 to bit 4 are DA4 ~ DA0.

The relationship between these bits and current gain G is:

HC=1, D=(65xG-33)/3

HC=0, D=(256xG-32)/3

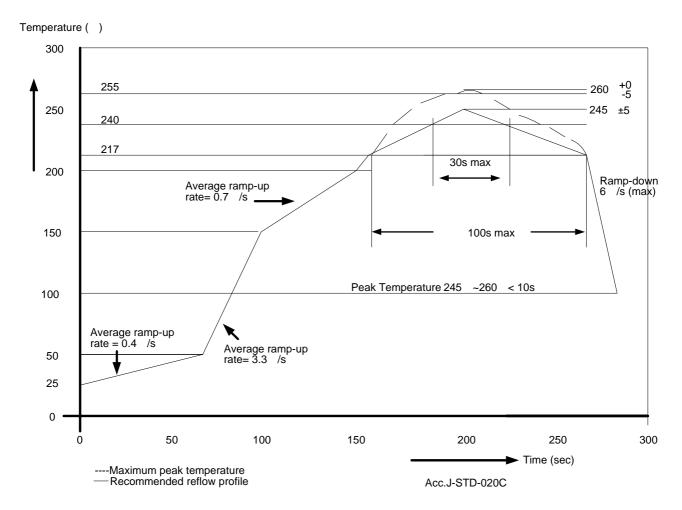
and D in the above decimal numeration can be converted to its equivalent in binary form by the following equation: $D = DA4x2^4 + DA3x2^3 + DA2x2^2 + DA1x2^1 + DA0x2^0$

In other words, these bits can be looked as a floating number with 1-bit exponent HC and 5-bit mantissa DA4~DA0. For example,

HC=1, G=1.246, D=(65x1.246-33)/3=16

the D in binary form would be:

 $D=16=1x2^{4}+0x2^{3}+0x2^{2}+0x2^{1}+0x2^{0}$


The 6 bits (bit 5~bit 0) of the configuration register are set to 6'b110000.

Staggered Delay of Output

MBI5042 has a built-in staggered circuit to perform delay mechanism. Among output ports exist a graduated 5ns delay time among $\overline{OUT4n}$, $\overline{OUT4n+1}$, $\overline{OUT4n+2}$, and $\overline{OUT4n+3}$, by which the output ports will be divided to four groups at a different time so that the instant current from the power line will be lowered.

Soldering Process of "Pb-free" Package Plating*

Macroblock has defined "Pb-Free" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it is backward compatible to standard 215°C to 240°C reflow processes which adopt tin/lead (SnPb) solder paste. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require up to 260°C for proper soldering on boards, referring to J-STD-020C as shown below.

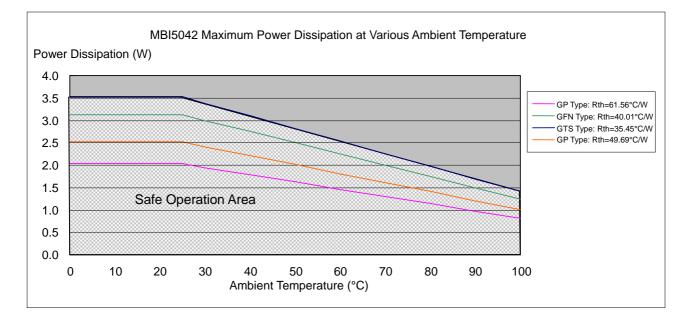
*Note: For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

MBI5042

With 16-Bit PWM Control

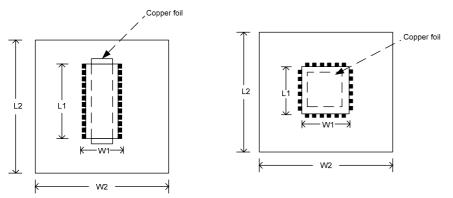
Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as $P_D(max)=(Tj-Ta)/R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is


 $P_D(act)=(I_{DD}xV_{DD})+(I_{OUT}xDutyxV_{DS}x16)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

 $I_{\text{OUT}} = \{ [(Tj-Ta)/R_{th(j-a)}] - (I_{\text{DD}}xV_{\text{DD}}) \} / V_{\text{DS}} / Duty / 16, \text{ where } Tj = 150^{\circ}\text{C}.$

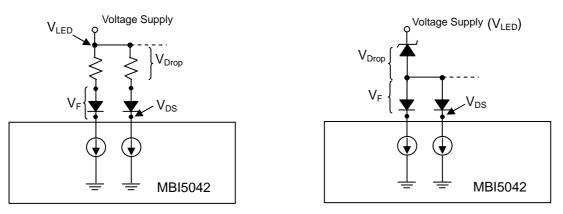
Please see the follow table for P_{D} and $\mathsf{R}_{\mathsf{th}(j\text{-}a)}$ for different package


Device Type	R _{th(j-a)} (°C/W)	P _D (W)
GF	49.69	2.52
GP	61.56	2.03
GTS	35.45	3.53
GFN	40.01	3.12

The maximum power dissipation, $P_D(max)=(Tj-Ta)/R_{th(j-a)}$, decreases as the ambient temperature increases.

Usage of Thermal Pad

The PCB area L2xW2 is 4 times of the IC's area L1xW1. The thickness of the PCB is 1.6mm, copper foil 1 Oz. The thermal pad on the IC's bottom has to be mounted on the copper foil.

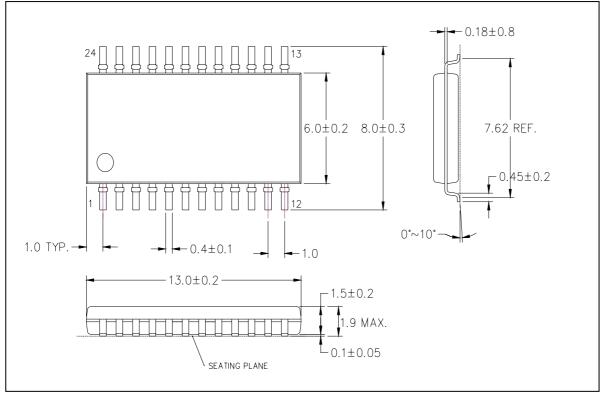


LED Supply Voltage (V_{LED})

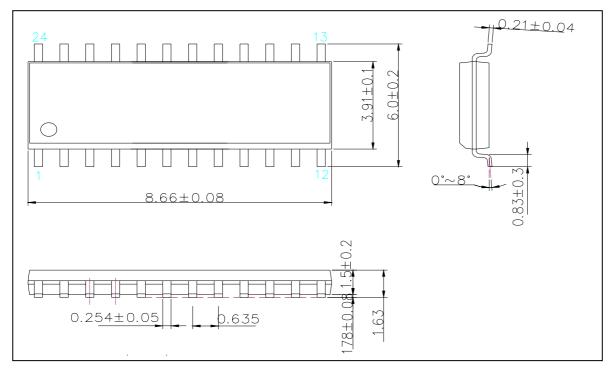
MBI5042 are designed to operate with V_{DS} ranging from 0.4V to 1.0V (depending on I_{OUT}=2~45mA) considering the package power dissipating limits. V_{DS} may be higher enough to make $P_{D (act)} > P_{D (max)}$ when V_{LED}=5V and V_{DS}=V_{LED}-V_F, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP}.

A voltage reducer lets $V_{DS}=(V_{LED}-V_F)-V_{DROP}$.

Resistors or Zener diode can be used in the applications as shown in the following figures.


Switching Noise Reduction

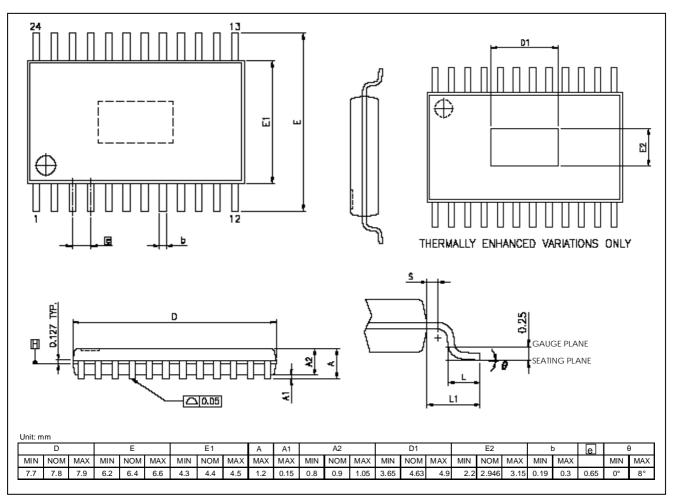
LED drivers are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers-Overshoot".


MBI5042

With 16-Bit PWM Control

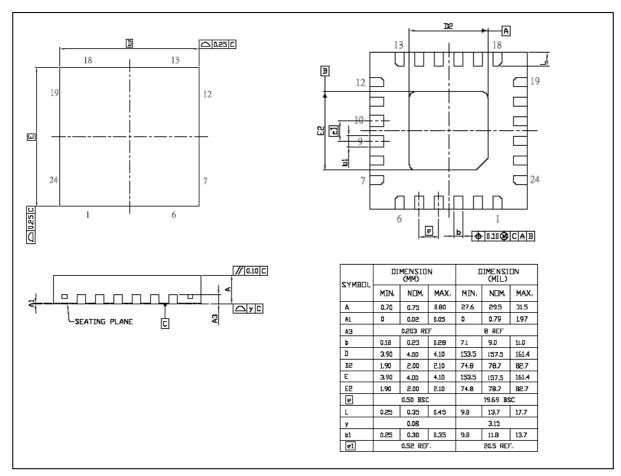
Package Outline

MBI5042GF Outline Drawing



MBI5042GP Outline Drawing

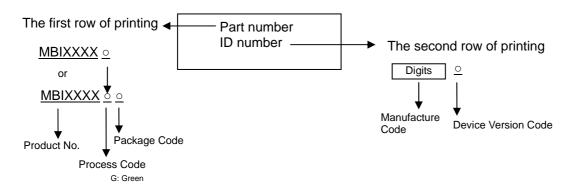
MBI5042


16-Channel Constant Current LED Driver

With 16-Bit PWM Control

MBI5042GTS Outline Drawing

16-Channel Constant Current LED Driver With 16-Bit PWM Control



MBI5042GFN Outline Drawing

Note 1: The unit for the outline drawing is mm.

Note 2: Please use the maximum dimensions for the thermal pad layout. To avoid the short circuit risk, the vias or circuit traces shall not pass through the maximum area of thermal pad.

Product Top Mark Information

Product Revision History

Datasheet version	Device Version Code
V1.00	A

Product Ordering Information

U		
Part Number	RoHS Compliant Package Type	Weight (g)
MBI5042GF	SOP24-300-1.00	0.30
MBI5042GP	SSOP24-150-0.64	0.11
MBI5042GTS	TSSOP24-173 -0.65	0.0967
MBI5042GFN	QFN24-4*4- 0.5	0.0379

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

Related technologies applied to the product are protected by patents. All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.