both a JEDEC SO and TSSOP 16-pin surface mount plastic package. The LMX2336 is available in a TSSOP 20-pin surface mount plastic package.

Features

- 2.7 V to 5.5 V operation
- Low current consumption
- Selectable powerdown mode: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (typ)
- Dual modulus prescaler: 64/65 or 128/129
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels
- Selectable FastLock ${ }^{\text {™ }}$ mode

Applications

- Cellular telephone systems (AMPS, ETACS, RCR-27)
- Cordless telephone systems (DECT, ISM, PHS, CT-1+)
- Personal Communication Systems (DCS-1800, PCN-1900)
- Dual Mode PCS phones
- CATV
- Other wireless communication systems

Fastlock ${ }^{T M}$, MICROWIRE ${ }^{T M}$ and PLLatinum ${ }^{T M}$ are trademarks of National Semiconductor Corporation.

Connection Diagrams

Order Number LMX2335M/LMX2335TM or
LMX2337M/LMX2337TM
NS Package Number M16A and MTC16

Order Number LMX2336TM NS Package Number MTC20

Pin Descriptions

Pin No. 2335/37	Pin No. 2336	Pin Name	I/O	Description
1	1	$\mathrm{V}_{\mathrm{Cc}} 1$		Power supply voltage input for RF1 analog and RF1 digital circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 1$ must equal $\mathrm{V}_{\mathrm{Cc}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
2	2	$\mathrm{V}_{\mathrm{p}} 1$		Power supply for RF1 charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
3	3	Do1	0	RF1 charge pump output. For connection to a loop filter for driving the input of an external VCO.
4	4	GND		LMX2335/37: Ground for RF1 analog and RF1 digital circuits. LMX2336: Ground for RF digital circuitry.
5	5	$\mathrm{f}_{\text {IN }} 1$	1	First RF prescaler input. Small signal input from the VCO.
X	6	$\overline{\mathrm{f}_{\text {IN }}} 1$	1	RF1 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
X	7	GND		Ground for RF1 analog circuitry.
6	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
7	9	$\mathrm{OSC}_{\text {out }}$	0	Oscillator output.
8	10	FoLD	\bigcirc	Multiplexed output of the programmable or reference dividers, lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
9	11	Clock	1	High impedance CMOS Clock input. Data for the various latches is clocked in on the rising edge, into the 20-bit shift register.
10	12	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
11	13	LE	1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
X	14	GND		Ground for RF2 analog circuitry.
X	15	$\overline{\mathrm{f}_{\text {IN }}} 2$	1	RF2 prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with loss of some sensitivity.
12	16	$\mathrm{f}_{\mathrm{IN}}{ }^{2}$	1	RF2 prescaler input. Small signal input from the VCO.
13	17	GND		LMX2335/37: Ground for RF2 analog, RF2 digital, MICROWIRE ${ }^{\text {TM }}$, F $_{0}$ LD and Oscillator circuits. LMX2336: Ground for RF2 digital, MICROWIRE, FoLD and Oscillator circuits.
14	18	$\mathrm{D}_{0} 2$	O	RF2 charge pump output. For connection to a loop filter for driving the input of an external VCO.
15	19	$\mathrm{V}_{\mathrm{p}} 2$		Power supply for RF2 charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.

Pin Descriptions (Continued)

Pin No. $\mathbf{2 3 3 5 / 3 7}$	Pin No. $\mathbf{2 3 3 6}$	Pin Name	I/O	Description
16	20	$\mathrm{~V}_{\mathrm{cc}} 2$		Power supply voltage input for RF2 analog. RF2 digital, MICROWIRE, F LD and Oscillator circuits. Input may range from 2.7V to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{cc}} 2$ must equal $\mathrm{V}_{\mathrm{cc}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.

Block Diagram

Note: $\mathrm{V}_{C C} 1$ supplies power to the RF1 prescaler, N-counter, R-counter, and phase detector. V_{CC} 2 supplies power to the RF2 prescaler, N-counter, phase detector, R -counter along with the $\mathrm{OSC}_{\text {in }}$ buffer, MICROWIRE, and $\mathrm{F}_{0} \mathrm{LD} . \mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}} 2$ are clamped to each other by diodes and must be run at the same voltage level.
$\mathrm{V}_{\mathrm{P}} 1$ and $\mathrm{V}_{\mathrm{P}} 2$ can be run separately as long as $\mathrm{V}_{\mathrm{P}} \geq \mathrm{V}_{\mathrm{C}}$.
LMX2335/37 Pin \# \rightarrow 8/10 \leftarrow LMX2336 Pin \#
Pin Name $\rightarrow \mathrm{F}_{\mathrm{o}}$ LD
X signifies a function not available

Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Power Supply Voltage

V_{CC}	-0.3 V to +6.5 V
$\mathrm{~V}_{\mathrm{P}}$	-0.3 V to +6.5 V
Voltage on Any Pin	
with GND $=0 \mathrm{~V}\left(\mathrm{~V}_{1}\right)$	-0.3 V to $\mathrm{V}_{\mathrm{cC}}+0.3 \mathrm{~V}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (solder 4 sec .) (T_{L})
$+260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Power Supply Voltage	
V_{CC}	2.7 V to 5.5 V
$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to +5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, except as specified

Electrical Characteristics
(Continued)
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
$\mathrm{I}_{\mathrm{D}_{0} \text {-TRI }}$	Charge Pump TRI-STATE CURRENT	$\begin{aligned} & \hline \text { LMX2335 } \\ & \text { LMX2336 } \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{0}} \leq \mathrm{V}_{\mathrm{p}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$	-5.0		5.0	nA
$\mathrm{I}_{\mathrm{D}_{0} \text {-TRI }}$	Charge Pump TRI-STATE CURRENT	LMX2337	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}_{0}} \leq \mathrm{V}_{\mathrm{p}}-0.5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$		± 5		nA	
V_{OH}	High-Level Output Voltage		$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$			V	
V_{OL}	Low-Level Output Voltage		$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V	
t_{cs}	Data to Clock Setup Time		See Data Input Timing	50			ns	
I_{CH}	Data to Clock Hold Time		See Data Input Timing	10			ns	
$\mathrm{t}_{\text {CWH }}$	Clock Pulse Width High		See Data Input Timing	50			ns	
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low		See Data Input Timing	50			ns	
$\mathrm{t}_{\text {ES }}$	Clock to Load Enable Set Up Time		See Data Input Timing	50			ns	
$\mathrm{t}_{\text {EW }}$	Load Enable Pulse Width		See Data Input Timing	50			ns	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performanced limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: This device is a high performance RF integrated circuit with an ESD rating $<2 \mathrm{keV}$ and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected workstations.
Note 3: See PROGRAMMABLE MODES for I_{CP} description.
Note 4: Clock, Data and LE does not include $f_{I N} 1, f_{I N} 2$ and $O S C_{\text {in }}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Charge Pump Current vs D_{o} Voltage

 $\mathrm{I}_{\mathrm{CP}}=\mathrm{HIGH}$

LMX2335/37 Input Impedance (for SO package)
$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=50 \mathrm{MHz}$ to 1.5 GHz

Charge Pump Current vs D_{o} Voltage
$I_{C P}=L O W$

LMX2335/37 Input Impedance (for TSSOP package) LMX2336 Input Impedance $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 5.5 V , $\mathbf{f}_{\mathrm{IN}}=\mathbf{5 0} \mathbf{~ M H z}$ to $\mathbf{2 . 5} \mathbf{~ G H z}$

DS012332-24
Marker $1=1 \mathrm{GHz}$, Real = 97, Imaginary $=-146$
Marker $2=1.89 \mathrm{GHz}$, Real $=43$, Imaginary $=-67$
Marker $3=2.5 \mathrm{GHz}$, Real $=30$, Imaginary $=-33$
Marker $4=500 \mathrm{MHz}$, Real $=189$, Imaginary $=-233$

Typical Performance Characteristics (Continued)

LMX2335/37 RF1 Sensitivity vs Frequency

LMX2336 RF1 Sensitivity vs Frequency

Oscillator Input Sensitivity vs Frequency

Functional Description

The simplified block diagram below shows the 22-bit data register, two 15-bit R Counters and two 18-bit N Counters (intermediate latches are not shown). The data stream is clocked (on the rising edge of Clock) into the DATA register, MSB first. The data stored in the shift register is loaded into one of the 4 appropriate latches on the rising edge of LE. The last two bits are the Control Bits. The DATA is transferred into the counters as follows:

PROGRAMMABLE REFERENCE DIVIDERS (RF1 AND RF2 R COUNTERS)
If the Control Bits are 00 or 01 (00 for RF2 and 01 for RF1) data is transferred from the 22-bit shift register into a latch which sets the 15 -bit R Counter. Serial data format is shown below.

15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Divide	\mathbf{R}														
Ratio	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\cdot	\bullet								
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratios less than 3 are prohibited.
Divide ratio: 3 to 32767
R1 to R15: These bits select the divide ratio of the programmable reference divider.
Data is shifted in MSB first.

Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)

Each N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bits are 10 or 11 (10 for RF2 counter and 11 for RF1 counter) data is transferred from the 20-bit shift register into a 7-bit latch (which sets the Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter), MSB first. Serial data format is shown below.

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

Divide Ratio A	\mathbf{N}	$\mathbf{7}$	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot	\bullet	\bullet	\cdot	\cdot	\cdot	\cdot	\bullet
127	1	1	1	1	1	1	1

$$
\begin{aligned}
& \text { Notes: Divide ratio: } 0 \text { to } 127 \\
& \mathrm{~B} \geq \mathrm{A} \\
& \mathrm{~A}<\mathrm{P}
\end{aligned}
$$

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio \mathbf{B}	\mathbf{N} $\mathbf{1 8}$	\mathbf{N} $\mathbf{1 7}$	\mathbf{N} $\mathbf{1 6}$	\mathbf{N} $\mathbf{1 5}$	\mathbf{N} $\mathbf{1 4}$	\mathbf{N} $\mathbf{1 3}$	\mathbf{N} $\mathbf{1 2}$	\mathbf{N} $\mathbf{1 1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\cdot	-										
2047	1	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)
$B \geq A$

PULSE SWALLOW FUNCTION

$f_{\mathrm{vco}}=[(\mathrm{P} \times \mathrm{B})+\mathrm{A}] \times \mathrm{f}_{\mathrm{Osc}} / \mathrm{R}$
$\mathrm{f}_{\mathrm{Vco}}$: Output frequency of external voltage controlled oscillator (VCO)
B: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter

$$
(0 \leq \mathrm{A} \leq \mathrm{P} ; \mathrm{A} \leq \mathrm{B})
$$

$\mathrm{f}_{\mathrm{Osc}}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 15 -bit programmable reference counter (3 to 32767)
P: \quad Preset modulus of dual modulus prescaler ($\mathrm{P}=64$ or 128)

PROGRAMMABLE MODES

Several modes of operation can be programmed with bits R16-R20 including the phase detector polarity, charge pump tristate and the output of the F_{0} LD pin. The prescaler and power down modes are selected with bits N19 and N20. The programmable modes are shown in Table 1. Truth table for the programmable modes and F_{0} LD output are shown in Tables 2, 3.

Functional Description (Continued)
TABLE 1. Programmable Modes

C1	C2	R16	R17	R18	R19	R20
0	0	RF2 Phase Detector Polarity	RF2 I IP_{\circ}	RF2 D TRI-STATE	RF2 LD	RF2 F_{\circ}
0	1	RF1 Phase Detector Polarity	RF1 I CP_{O}	RF1 D_{\circ} TRI-STATE	RF1 LD	RF1 F_{\circ}

C1	C2	N19	N20
1	0	RF2 Prescaler	Pwdn RF2
1	1	RF1 Prescaler	Pwdn RF1

TABLE 2. Mode Select Truth Table

	Phase Detector Polarity $($ Note 7)	Dotral-STATE	$\mathbf{I}_{\mathbf{C P}}$ $($ Note 5)	RF1 Prescaler	RF2 Prescaler	Pwdn (Note 6)
0	Negative	Normal Operation	LOW	$64 / 65$	$64 / 65$	pwrd up
1	Positive	TRI-STATE	HIGH	$128 / 129$	$128 / 129$	pwrd dn

Note 5: The $\mathrm{I}_{\mathrm{CP}}{ }_{0}$ LOW current state $=1 / 4 \times \mathrm{I}_{\mathrm{CP}}^{\mathrm{o}}$ HIGH current.
Note 6: Activation of the RF2 PLL or RF1 PLL powerdown modes result in the disabling of the respective N counter divider and debiasing of its respective $f_{I N}$ inputs (to a high impedance state). The powerdown function is gated by the charge pump to prevent unwanted frequency jumps. Once the powerdown program mode is loaded, the part will go into powerdown mode when the charge pump reaches a TRI-STATE condition. The R counter and Oscillator functionality does not become disabled until both RF2 and RF1 powerdown bits are activated. The $\mathrm{OSC}_{\text {in }}$ is connected to V_{CC} through $100 \mathrm{k} \Omega$ resistor and the $\mathrm{OSC}_{\text {out }}$ goes HIGH when this condition exists. The MICROWIRE control register remains active and capable of loading and latching data during all of the powerdown modes.
Note 7: PHASE DETECTOR POLARITY
Depending upon VCO characteristics, the R16 bits should be set accordingly:
When VCO characteristics are positive like (1), R16 should be set HIGH;
When VCO characteristics are negative like (2), R16 should be set LOW.
Note 8:

TABLE 3. The FoLD Output Truth Table

RF1 R[19] (RF1 LD)	RF2 R[19] (RF2 LD)	RF1 R[20] $\left(\right.$ RF1 $\left.\mathbf{F}_{\mathbf{o}}\right)$	RF2 R[20] $\left(\right.$ RF2 $\left.\mathbf{F}_{\mathbf{o}}\right)$	FoLD Output State
0	0	0	0	Disabled (Note 9)
0	1	0	0	RF2 Lock Detect (Note 10)
1	0	0	0	RF1 Lock Detect (Note 10)
1	1	0	0	RF1/RF2 Lock Detect (Note 10)
X	0	0	1	RF2 Reference Divider Output
X	0	1	0	RF1 Reference Divider Output
X	1	0	1	RF2 Programmable Divider Output
X	1	1	0	RF1 Programmable Divider Output
0	0	1	1	Fastlock (Note 11)
0	1	1	1	For Internal use only
1	0	1	1	For Internal use only
1	1	1	1	Counter Reset (Note 12)

X-don't care condition

Functional Description (Continued)

Note 9: When the F_{0} LD output is disabled it is actively pulled to a low logic state.
Note 10: Lock detect output provided to indicate when the VCO frequency is in "lock". When the loop is locked and a lock detect mode is selected, the pins output is HIGH, with narrow pulses LOW. In the RF1/RF2 lock detect mode a locked condition is indicated when RF2 and RF1 are both locked.
Note 11: The Fastlock mode utilized the F_{0} LD output pin to switch a second loop filter damping resistor to ground during fastlock operation. Activation of Fastlock occurs whenever the RF loop's Icpo magnitude bit \#17 is selected HIGH (while the \#19 and \#20 mode bits are set for Fastlock).
Note 12: The Counter Reset mode bits R19 and R20 when activated reset all counters. Upon removal of the Reset bits the N counter resumes counting in "close" alignment with the R counter. (The maximum error is one prescaler cycle). If the Reset bits are activated the R counter is also forced to Reset, allowing smooth acquisition upon powering up.

SERIAL DATA INPUT TIMING

Notes: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{CC}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{o} pin when the loop is locked.

Typical Application Example

Operational Notes:

* VCO is assumed AC coupled.
** $\quad \mathrm{R}_{\mathrm{IN}}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. f_{IN} RF impedance ranges from 40Ω to 100Ω. f_{IN} IF impedances are higher.
*** 50Ω termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. OSC in may be AC or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below).
**** Adding RC filters to the V_{Cc} lines is recommended to reduce loop-to-loop noise coupling.

Application Hints:

Proper use of grounds and bypass capacitors is essential to achieve a high level of performance. Crosstalk between pins can be reduced by careful board layout.
This is an electrostatic sensitive device. It should be handled only at static free work stations.

Application Information

A block diagram of the basic phase locked loop is shown in Figure 1.

FIGURE 1. Conventional PLL Architecture

Application Information (Continued)

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain $\left(K_{\phi}\right)$, the VCO gain ($\mathrm{K}_{\mathrm{vco}} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in Equation (2).

FIGURE 2. PLL Linear Model

FIGURE 3. Passive Loop Filter

$$
\begin{gather*}
\text { Open loop gain }=H(s) G(s)=\frac{\Theta_{i}}{\Theta_{e}}=\frac{K_{\phi} Z(s) K_{V C 0}}{N s} \tag{1}\\
Z(s)=\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2} \tag{2}
\end{gather*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{gather*}
T 1=R 2 \cdot \frac{C_{1} \cdot C_{2}}{C 1+C_{2}} \tag{3}\\
T 2=R 2 \cdot C_{2} \tag{4}
\end{gather*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time contants T1 and T2, and the design constants $\mathrm{K} \phi, \mathrm{K}_{\mathrm{vcO}}$, and N .

$$
\begin{equation*}
\left.G(s) \bullet H(s)\right|_{S=j \bullet \omega}=\frac{-K_{\phi} \bullet K_{V C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+J \omega \bullet T 1)} \bullet \frac{T 1}{T 2} \tag{5}
\end{equation*}
$$

From Equation (3) we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in Equation (5).

$$
\begin{equation*}
\phi(\omega)=\tan ^{-1}(\omega \cdot \mathrm{~T} 2)-\tan ^{-1}(\omega \cdot \mathrm{~T} 1)+180^{\circ} \mathrm{C} \tag{6}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter ϕ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45 degrees.
If we were now to redefine the cut off frequency, wp', as double the frequency which gave us our original loop bandwidth, wp, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed Fastlock scheme, the higher spur levels and wider loop filter conditions would exist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve Figure 4 over to a different cutoff frequency, illustrated by dotted line, without affecting the relative open loop gain and phase relationships. To maintain the same gain/phase relationship at twice the original cutoff frequency, other terms in the gain and phase Equations (5), (6) will have to compensate by the corresponding " $1 / \mathrm{w}$ " or " $1 / \mathrm{w}^{2}$ " factor. Examination of Equations (3), (4), (5) indicates the damping resistor variable R2 could be chosen to compensate with " w " terms for the phase margin. This implies that another resistor of equal value to R2 will need to be switched in parallel with R2 during the initial lock period. We must also ensure that the magnitude of the open loop gain, $\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ is equal to zero at wp' = $2 \mathrm{wp} . \mathrm{K}_{\mathrm{vco}}, \mathrm{K} \phi, \mathrm{N}$, or the net product of these terms can be changed by a factor of 4 , to counteract with w^{2} term present in the denominator of Equations (3), (4). The K ϕ term was chosen to complete the transformation because it can readily be switched between 1X and 4X values. This is accomplished by increasing the charge pump output current from 1 mA in the standard mode to 4 mA in Fastlock.

Fastlock Circuit Implementation

A diagram of the Fastlock scheme as implemented in National Semiconductors LMX2335/36/37 PLL is shown in Figure 5. When a new frequency is loaded, and the RF1 $\mathrm{I}_{\mathrm{CPo}}$ bit is set high, the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NMOS on chip device switches in a second R2 resistor element to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration ensures that as long as a second identical damping resistor is wired in appropriately, the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the user can return the PLL to standard low noise operation by sending a MICROWIRE instruction with the RF1 $\mathrm{I}_{\mathrm{CPo}}$ bit set low. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between Fastlock and standard mode.

Application Information (Continued)

FIGURE 4. Open Loop Response Bode Plot

FIGURE 5. Fastlock PLL Architecture

Physical Dimensions inches (millimeters) unless othervise noted

JEDEC 16-Lead (0.150" Wide) Small Outline Molded Package (M) Order Number LMX2335M or LMX2337M *For Tape and Reel (2500 Units Per Reel) Order Number LMX2335MX or LMX2337MX

NS Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

MTC20 (Rev D)

20-Lead (0.173" Wide) Thin Shrink Small Outline Package (TM)
 Order Number LMX2336TM
 *For Tape and Reel (2500 Units Per Reel)
 Order Number LMX2336TMX
 NS Package Number MTC20

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 180-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 6995086208	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +44 (0) 8702402171	Email: ap.support@nsc.com	
www.national.com	Français Tel: +33 (0) 141918790		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

