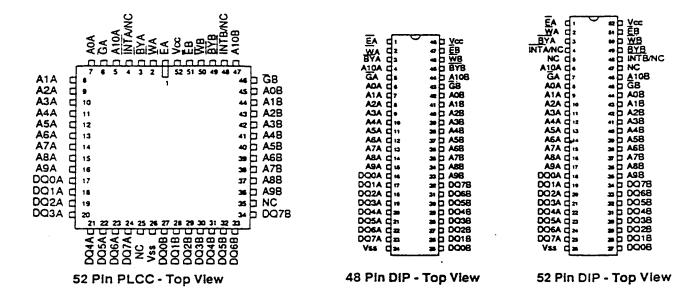
Preliminary Data Sheet

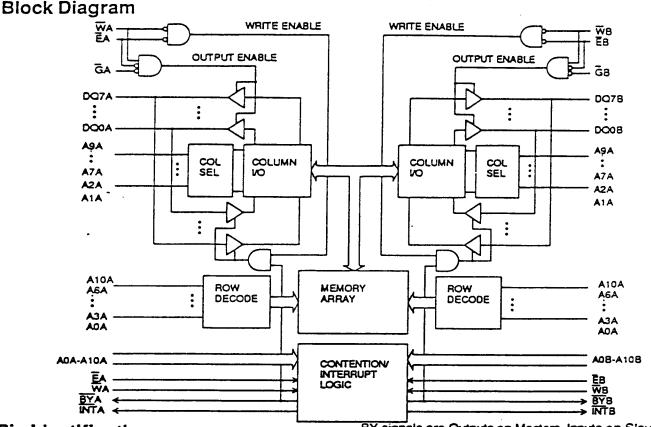
Functional Description

The LH5911, LH5912 and LH5914 are dual port static RAMs that use true dual port memory cells to allow each port to independently access any location in memory. The LH5911 and LH5912 are "Master" devices which may be used alone in a single width configuration, or with one or more LH5914 "Slave" devices in wide word applications.


Each port provides a conventional byte wide interface to the system. Chip Enable (\overline{E}) , Write Enable (\overline{W}) , and Output Enable (\overline{G}) inputs independently control the function of each port. Additionally, Busy (\overline{BY}) and Interrupt (\overline{INT}) flags provide communication between the ports. An asserted \overline{BY} output indicates that the internal arbitration logic has granted the opposite port access to the desired address. An asserted \overline{INT} flag indicates the opposite port has requested attention by writing to a specific location. \overline{BY} and \overline{INT} are open drain outputs, allowing for wire or-ing of either function. \overline{BY} is an output on Master type devices and an input on Slave type devices.

Power reduction circuitry has been designed into each port, controlled by \overline{E} . Battery backup is possible with data retention at voltages down to 2.0V in the Data Retention mode.

LH5911/LH5912/LH5914 2K x 8 CMOS Dual Port RAM


Features

- Fast Access Times 35/45/55 ns
- True Dual Port Memory Array
- Fully Asynchronous
- LH5911: Master
- LH5912: Master with INT LH5914: Slave
- Busy Output on Master Busy Input on Slave
- Data Retention Mode for Battery
 Backup
- 48-Pin DIP, 52-Pin DIP or 52-Pin PLCC
- INT Flag for Inter Port Communication (LH5912 Only)
- E Power Down
- "Transparent" Write
- TTL Compatible I/O

Pinout Diagrams

LH5911/LH5912/LH5914

Pin Identification

BY signals are Outputs on Masters, Inputs on Slaves

A0-A10																																_				Address Inputs
DQo-D	07	1							 	 											•															Data inputs/Outputs
<u>E</u>				•	•	•				 		-		•	•		•	•	۰.					•			•				•	•				. Chip Enable Input
<u>w</u>		٠	•	•		•			 	 			•	•		•	•	•			•	•	•		•		•			•			•			Write Enable Input
<u> </u>		•		•	•	•	•			 	•		•	•	•	•	•	•	•		•	•	•							•	•				•	Output Enable Input
																																				Busy Output (Input)
INT/NC	;	•	•	•	•	٠	•			 	•		•	•		•			•	•	•	•		•		•	•	•				•	•			Interrupt Output
																																				ositive Power Supply
	•	•	•		•	•	•	•		 	•	-	•		•	•	•	•	•		•	•	•	•	•		•	•	•	•			•	•		Ground
Notes:																																				

Functions apply equally to Port A and Port B

Vcc and Vss are common to both ports.

 \overrightarrow{BY} A and \overrightarrow{BY} B are outputs on LH5911 and LH5912. \overrightarrow{BY} A and \overrightarrow{BY} B are inputs on LH5914. INT A/NC and \overrightarrow{INT} B/NC are \overrightarrow{INT} A and \overrightarrow{INT} B on LH5912, and NC on LH5914

Configuration Table

Part Number	Package	# of Pins	BY	ÎNT/NC	Туре
LH5911	DIP	48	Output	N/A	Master
LH5912	DIP	52	Open Drain Output	Open Drain Output	Master
LH5912	PLCC	52	Open Drain Output	N/A	Master
LH5914	DIP	48	Input	NC	Slave
LH5914	PLCC	52	Input	N/A	Slave

Preliminary Data Sheet

SHARP

Page 2

Absolute Maximum Ratings¹

Supply Voltage to Ground Potential
Signal Pin Voltage Range
DC Output Current ² ± 40 mA
Storage Temperature Range
Power Dissipation (Package Limit) 1.0W

Operating Range

Symbol	Parameter	Min	Max	Unit
TA	Temperature, Ambient	0	70	°C
Vcc	Supply Voltage	4.5	5.5	V
Vss	Supply Voltage	0	0	v
VIL	Logic "0" Input Voltage 3	-0.5	0.8	V
ViH	Logic "1" Input Voltage	2.2	Vcc+0.5	V

DC Electrical Characteristics - Over Operating Range

Symbo	ol Parameter	Test Conditions	Min	Тур	Max	Unit
Icc1	Operating Current ⁴				150	mA
IS81	Standby Current	Ē A and Ē B ≥VIH			30	mA
IS8 2	Standby Current 4	Ē ▲ or Ē в ≥ViH	1		75	mA
IS83	Standby Current	E A and E B ≥Vcc-0.2V		1	5	mА
IS84	Standby Current 4	Ē A OF Ē B ≥Vcc-0.2V			65	mA
lu	Input Leakage Current	Vcc=5.5V, Vin = 0V to Vcc	1	1	2	μА
ILO	I/O Leakage Current	Vcc=5.5V, Vin = 0V to Vcc			2	μA
Vон	Output High Voltage	юн = -4.0mA	2.4	1	1	V
VOL	Output Low Voltage	ю <u>ь</u> = 8.0mA			0.4	٦V
VOL	Output Low Voltage 5	loL = 16.0mA			0.5	V
VDR	Data Retention Voltage	Ē ≥Vcc-0.2V	2.0			v
IDA	Data Retention Current	VDR = 3.0V	T		100	υA

AC Test Conditions

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	
Input and Output Timing Ref. Levels	
Output Load, Timing Tests	See Figure, Page 5

Capacitance ^{6,7}

CIN (Input Capacitance)	7pF
Cpq (Output, Input/Output Capacitance)	7pF

See notes following "Switching Characteristics"

Switching Characteristics - Over Operating Range 8

See Notes on Page 5

٠.

	B a sector to a	-35		-4		-5		
ymbol		Min	Max	Min	Max	Min	Max	Unit
Read	Cycle				_			
tRC	Read Cycle Timing	35		45		55		ns
taa	Address Access Time		35		45		55	ns
tон	Output Hold from Address Change	3		3	T	3		ns
tea 🛛	E Low to Valid Data		35	1	45	1	55	ns
telz	E Low to Output Active 6.9	5		5		5		ns
tehz 🛛	E High to Output High Z 6.9	3	15	3	20	3	25	ns
tgiz"	G Low to Output Active 6,9,10	3	15	3	20	3	25	กร
lgнz	G High to Output High Z ^{6,9}	3	15	3	20	3	25	ns
IPU	E Low to Power Up Time ⁶	0		0		0		ns
IPD	E High to Power Down Time ⁶		20		25		30	ns
Write	Cycle							
twc	Write Cycle Time	35		45		55		ns
EW	E Low to End of Write	30		35		40		ns
law	Address Valid to End of Write	30	1	35		40		ns
as	Address Setup	0		0	T	0		ns
AH	Address Hold from End of Write	0		0	1	0		ns
WP	W Pulse Width	30		35		40		ns
DW	Input Data Setup Time	15		20		25		ns
DH	Input Data Hold Time	0		0		0		ns
WHZ	W Low to Output High Z 6,9		15		20		25	ns
wlz	W High to Output Active 6.9	3		3		3		ns
Conte	ntion Timing							
BL	Contention Exists to BY Low	0	20	0	25	0	30	ns
вн	Contention Ends to BY High	0	20	0	25	0	30	ns
wi	W High Prior to BY High to Inhibit Write	15		15		15		ns
000	Data Flow Through Time (Transparent Write)		40		45		55	ns
WDD	Write LOW to Data Valid (Opposite Port)		50		55		65	ns
APS	Arbitration Priority Setup Time	10		10		10		ns
WRD	W Low to Read Data Invalid	5		5		5		ns
BW	BY Low to W Low for Slave	0		0		0		ns
w	BY High to W High for Valid Write	15		20		25		ns
BDD	BY High to Valid Data		Note 11		Note 11		Note 11	ns
Interru	pt Timing	i			<u>. </u>		<u></u>	
NS	Write Cycle begin to INT Low	T	25		30		35	ns
MNS	W Low to INT Low		25		30		35	ns
NR	Read Cycle Begin to INT High		25		30		35	пѕ
SINR	G Low to INT High		25		30		35	ns

Preliminary Data Sheet

2K x 8 Dual Port RAM

Notes:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

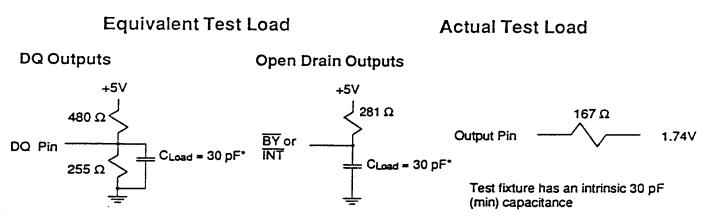
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

3. Negative undershoots of up to 3.0V are permitted once per cycle.

4. Icc and Isa are dependent upon actual output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

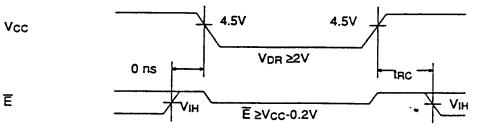
5. Open Drain outputs only (INT and BY).

6. Sample tested only.


7. Capacitances are maximum values at 25°C measured at 1.0 MHz with Vin=0V and Vcc=5.0V.

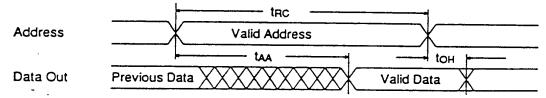
8. Switching Characteristics measurements performed at *AC Test Condition* levels.

9. Active output to High-Z and High-Z to active output tests specified for a 500mV transition from steady state levels into the test load. $C_{\rm Load}$ is 5 pF for these tests.

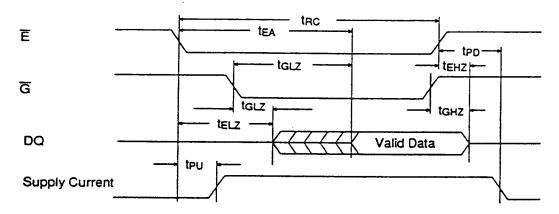

10. touz (max) will result in Valid Data Out given that both tax and tex have been met.

11. topo is determined by the greater of 0, twoo - two(actual) or topo - tow(actual).

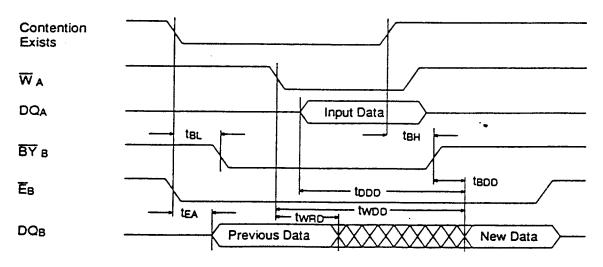
Includes scope and jig capacitance.


Data Retention Timing

Switching Waveforms - Read Cycle


Read Cycle No. 1 - Either Port

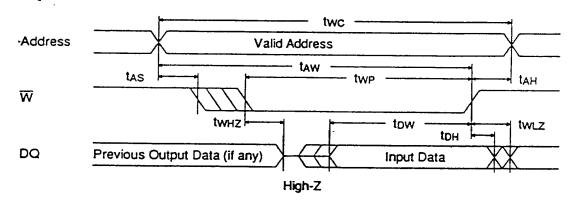
Chip is in Read mode: \overline{W} is HIGH and \overline{E} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of I/O implies that data lines are in the Low-Z state and that Data-out may not be valid.


Read Cycle No. 2 - Either Port

Chip is in Read mode: \overline{W} is HIGH. Timing illustrated for the case where addresses are valid before \overline{E} goes LOW. Data-out is not specified to be valid until the latter of tEA or tGLZ(min), but may become valid as soon as tELZ or tGLZ(max). Outputs will transition from high-Z to valid Data-out.

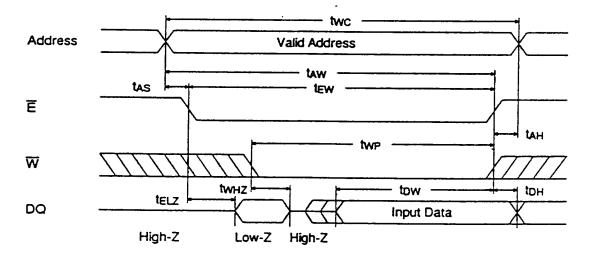
Read Cycle No. 3 - Read While BY (Transparent Write)

Contention occurs with Port A winning. Port A performs a Write (which is shown as a delayed Write in this example for illustration purposes). Port B performs a Read. Port B's DQ lines will follow the contents of the memory location, even as Port A changes it. DQs becomes indeterminate twnp after \overline{W} A goes low. DQs will reflect the new data topp after it is presented to DQA. The new data on DQs will be guaranteed to be valid tgpp after \overline{BY} B returns HIGH.

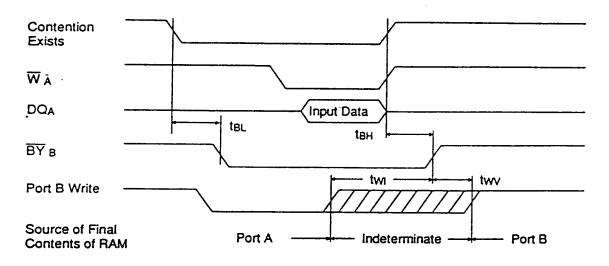

Preliminary Data Sheet

Switching Waveforms - Write Cycle

Addresses must be stable during Write Cycles. The outputs will remain in the high Z state if \overline{W} is low when \overline{E} goes low. If \overline{G} is high, the outputs will remain in the high Z state. Although these examples illustrate timing with \overline{G} active, it is recommended that \overline{G} be held high for all write cycles. This will prevent the outputs from becoming active during write cycles, preventing bus contention, thereby reducing system noise.


Write Cycle No. 1 (W Controlled)

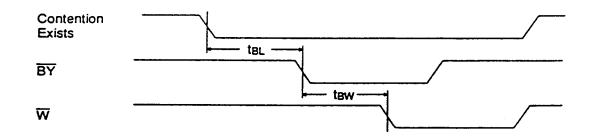
Chip is selected: \vec{E} is low. The data bus may become driven twill after the rising edge of \overline{W} . Given that the addresses have not changed, the output data will be identical to the data previously written into the same location.


Write Cycle No. 2 (E Controlled)

DQ lines may transition to low Z if the falling edge of \overline{W} occurs after telz from the falling edge of \overline{E} .

Write Cycle No. 3 - Write While Busy

This cycle demonstrates contention occurring with Port A winning. Port A performs a Write. Port B performs a Write. The Write on Port A will occur normally. The Write on Port B will be inhibited while \overrightarrow{BY} B is LOW. If the Write on Port B is terminated prior to two, it will have been completely inhibited. If the Write on Port B ends later than two after \overrightarrow{BY} B returns HIGH, the data on DQB will have been written into the location. If the Write on Port B ends after two but before two, the data left in the addressed location may be indeterminate.


Width Expansion - Use of the Slave LH5914

Systems wider than 8 bits will need to use dual port RAMs in parallel. Slave LH5914 chips should be used for word width expansion to prevent the multiple dual port RAMs from resolving contention situations in favor of different ports. Systems which have the potential for contention to exist should use LH5912 52-pin Masters with BY outputs instead of LH5911 48pin Standalone devices, which do not have BY outputs.

Slave device's \overline{BY} pins are Inputs. Systems should connect the Master's \overline{BY} open drain outputs to every Slave's \overline{BY} inputs, with a pull up resistor to Vcc.

Slaves depend upon the Master to determine which port should be the winner in the event of contention. Read cycle timing is not effected, however special considerations must be made in Write cycle timing. To assure that the Slave has sufficient time to inhibit Write cycles on the losing port, the falling edge of \overline{W} must occur at least tew after \overline{BY} for that port goes low. Delaying the falling edge of \overline{W} by teL+tew from the falling edge of \overline{E} will meet this constraint.

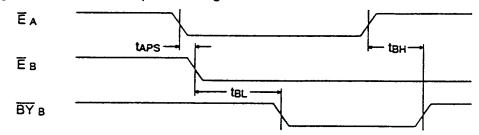
The same constraints apply with respect to properly ending Write cycles in Slaves as it does in Masters. Refer to the next section.

Contention Operation

Contention occurs when both ports attempt to address the same location at the same time. Proper system operation can be insured if each port's Busy output is used to generate wait states, stretching the cycle for the duration of the Busy condition.

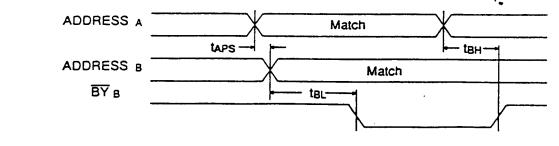
In these examples, assume that Port A arrives first, so \overline{BY} B is asserted. All cycles on Port A will occur normally. Read cycles on Port B will occur normally, but Write cycles on Port B will be inhibited until its \overline{BY} flag returns HIGH.

Port A Read; Port B Read. Reads to the same location will yield valid data on both ports.


Port A Write; Port B Read. The Write cycle on Port A will be successfully completed. The Read on Port B will follow the changing contents of the RAM location. Read Cycle 3 illustrates this operation. The assertion of \overline{BY} g during Port B's Read cycle signals that the data may be changing, and that Port B must wait for tgoo for that data to be assured of being valid. Port A Write; Port B Write. The winning port will successfully complete its Write, however the final contents of the location will depend upon the timing of the losing port. Port B's Write will be inhibited for the duration of the contention. If Port B's Write ends prior to two of the rising edge of \overline{BY}_B , Port B's write will have been inhibited and Port A's data will remain in the RAM. If Port B extends its Write past two after the rising edge of \overline{BY}_B , Port B's Write will be complete, and Port B's data will be left in the RAM. If Port B's data will be left in the RAM. If Port B's data will be left in the RAM. If Port B's data will be left at the addressed byte.

Port A Read; Port B Write. The Read on Port A will inhibit the Write on Port B for the duration of the contention. The outcome of the inhibited Write on Port B will be determined in the same way as the case of "Port A Write; Port B Write", described above.

Switching Waveforms - Contention


Addresses Match; E Arbitration

Both port's addresses match prior to \vec{E} being asserted. If the falling edges of the \vec{E} s are within taps, the contention logic will determine which port's \vec{BY} flag is asserted.

Both Ports Enabled; Address Arbitration

Both ports are enabled prior to the addresses matching. If the addresses are valid within tAPS, the contention logic will determine which port's \overline{BY} flag is asserted.

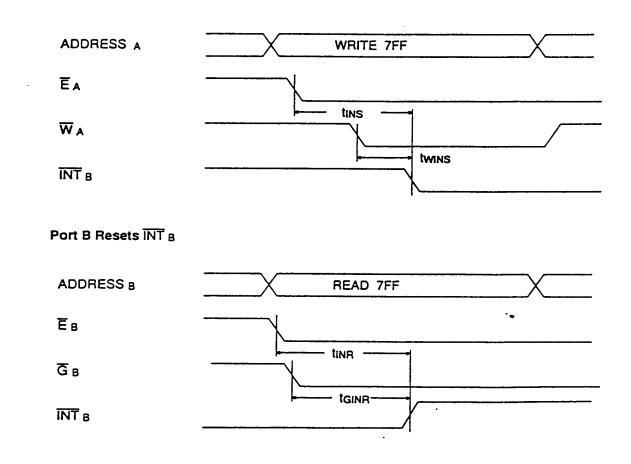
LH5911/LH5912/LH5914

2K x 8 Dual Port RAM

Interrupt Operation - LH5912

LH5912s are 52 pin Masters that provide an interport communication scheme through the use of interrupt latches. Each port is assigned a unique "mailbox" within the memory address space. When a port writes to its own mailbox, the opposite port's latch is set, and its INT output goes LOW.

When Port A wants to send Port B a message, Port A writes to its own mailbox at memory location 7FF (A0-A10 = HIGH). This will cause \overline{INT} B to be set. Port B can then reset that interrupt by reading Port A's mailbox at location 7FF. \overline{G} B must be active during Port B's Read cycle for \overline{INT} B to be reset.

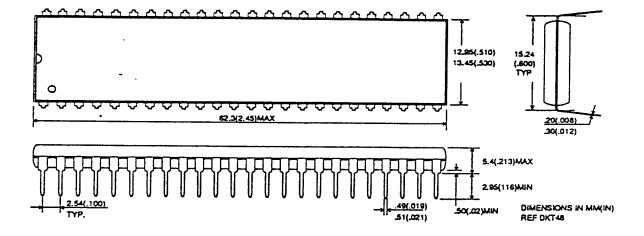

Port B's mailbox is at memory location 7FE (A0 = LOW, A1-A10 = HIGH). Port B sends a mes-

sage to Port A by writing to its own mailbox, which sets \overline{INT}_A . Port A resets \overline{INT}_A by reading Port B's mailbox. \overline{G}_A must be active during Port A's Read cycle for \overline{INT}_A to be reset.

The mailboxes are normal memory locations. Contention effects Read and Write operations to the mailbox locations in the same way it effects any other memory address.

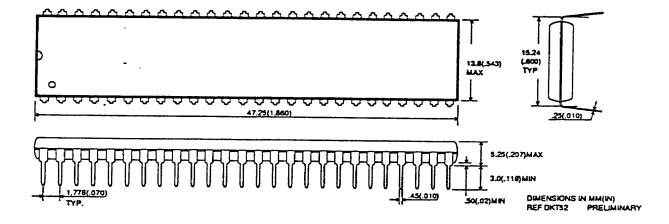
The INT outputs are active LOW open drain outputs. They should be pulled up to Vcc with a resistor, and may be wire ORed together. Systems not using the INT functions may leave the INT pins open. The INT latches should be reset upon power-up to assure they were not set during power-up.

Switching Waveforms - Interrupt

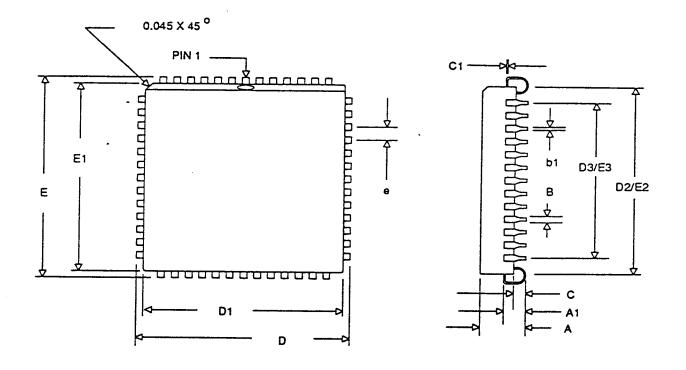

SHARP

Port A Sets INT_B

Preliminary Data Sheet


2K x 8 Dual Port RAM

Package Diagram - 48-Pin Plastic DIP



LH5911/LH5912/LH5914

Package Diagram - 52-Pin Plastic DIP

Package Diagram - 52-Pin PLCC

	inc	hes	millin	neters
Symbol	Min	Max	Min	Max
A	0.165	0.180	4.19	4.57
A1	0.090	0.120	2.29	3.05
8	0.026	0.032	0.66	0.82
b1	0.013	0.021	0.33	0.53
C	0.020	0.040	0.51	1.02
C1	0.008	0.012	0.20	0.30
D	0.785	0.795	19.94	20.19
D1	0.750	0.756	19.05	19.20
D2/E2	0.690	0.756	17.53	19.20
D3/E3	0.600	REF	15.24	REF
E	0.785	0.795	19.94	20.19
E1	0.750	0.756	19.05	19.20
0	0.050	BSC	1.27	BSC

Ordering Information

Ordering Code	Туре	Speed	# Pins	Package Type
LH5911-35	Master	35ns	48	600-Mil Plastic DIP
LH5911-45	Master	45ns	48	600-Mil Plastic DIP
LH5911-55	Master	55ns	48	600-Mil Plastic DIP
LH5912-35	Master	35ns	52	600-Mil Plastic DIP
LH5912-45	Master	45ns	52	600-Mil Plastic DIP
LH5912-55	Master	55ns	52	600-Mil Plastic DIP
LH5912U-35	Master	35ns	52	PLCC
LH5912U-45	Master	45ns	52	PLCC
LH5912U-55	Master	55ns	52	PLCC
LH5914-35	Slave	35ns	48	600-Mil Plastic DIP
LH5914-45	Slave	45ns	48	600-Mil Plastic DIP
LH5914-55	Slave	55ns	48	600-Mil Plastic DIP
LH5914U-35	Slave	35ns	52	PLCC
LH5914U-45	Slave	45ns	52	PLCC
LH5914U-55	Slave	55ns	52	PLCC

Sales Representatives, Distributors, and Regional Sharp Offices

AL, Huntsville Interep Assoc. (205) 881-1096 AL, Mobile Interep Assoc. (205) 478-1036 AZ, Scottsdale T.D.S.I., Inc. (602) 998-2444 CA, Newport Beach Plustronics (714) 476-8009 CA, Ojai · · · · · Plustronics (805) 646-1950 CA, San Diego . . Mesa Components (619) 278-8021 CA, Technical Sales . . Quorum Technical Sales (408) 980-0812 CA, Sherman Oaks Plustronics (818)995-8908 CT, Southington . Orion/DSA Group (203) 621-8371 CO, Denver Seale & Assoc. (303) 756-8855 FL, Boca Raton . . . Lawrence Assoc. (407) 368-7373 FL, Paim Bay Lawrence Assoc. (407) 951-0901 FL, Palm Harbor . . . Lawrence Assoc. (813) 787-2773 FL, Winter Springs. . . Lawrence Assoc. (407) 365-1945 GA, Norcross · · · · · · · Interep (404) 449-8680 IL, Des Plaines . . Electron Marketing (312) 298-2330

IN, Indianapolis (317) 844-9227 KS, Wichita. ···· Baka Corp. (316) 682-8411 MA, Mariboro . . . Orion/DSA Group (508) 480-0516 MA, Peabody Orion/DSA Group (508) 532-6266 MD, Towson ATS (301) 296-9360 MI, Grand Rapids . . . DEM Sales, Inc. (616) 364-4024 MI, St. Clair Shores. . . DEM Sales, Inc. (313) 777-1750 MN, Minneapolis . . . Comstrand, Inc. (612) 788-9234 MO, St. John Baka Corp. (314) 429-2252 NJ, Allendale Eastec Assoc (201) 934-7135 (716) 586-9002 NC, Raleigh Zucker Assoc. Inc. (919) 782-8433 OH, Dayton . . 5 Star Electronics, Inc. (513) 299-1718 OH, Solon 5 Star Electronics (216) 349-1611 OR, Beaverton Blair Hirsh Co. (503) 641-1875 PA, Erdenheim 5 Star Electronics, Inc. (215) 233-4600 TN. Greeneville . . · · · · · Interep (615) 639-3491

TX, Austin Impaq Sales Co. (512) 474-1125 TX, Carrollton Impag Sales Co. (214) 247-3300 TX, Houston Impaq Sales Co. (713) 820-0288 UT, Salt Lake City . . . Seale & Assoc. (801) 266-9056 VA, Richmond . . . Advanced Tech. (804) 320-8756 WA, Lynnwood . . . Blair Hirsh Co. (206) 774-8151 Canada, Surrey, BC · · · · · Enerlec Sales, Ltd (604) 888-1667 Canada, Mississauga, Ont. High Tech Sales, Ltd. (416) 672-0284

Distributors:

• • • • •	. Added Value Electronics
• • • • •	Marshall Industries
	· · · · · · · · · · Milgray
	Space Electronics
••••	Western Micro Technology

Sharp Regional Offices:

Carson, CA	.(213) 637-9488
	.(508) 975-1979
Lawrenceville, GA	.(404) 995-0717
Dailas, TX	.(214) 991-5185
Mahwah, NJ	.(201) 529-8758
Santa Clara, CA	.(408) 727-7914

Specifications are subject to change without notice. Preliminary data sheets contain minimum and maximum limits based upon design objectives, which are subject to change upon full characterization over the specified operating conditions.

SHARP

In North America

In Europe

In Asia

Sharp Corporation IC Group 2613-1 Ichinomoto-Cho Tenri City, Nara 632, Japan Phone (07436)5-1321 Telex . 5522-364(SHARPEL J)

Ref Code SMT88012B CSharp Corp. June 11, 1989 Printed in USA

Slow 128Kx8 (0.8 um CMOS TFT)	Slow 32Kx8 (1.0 um CMOS)				8Kx8 (1.2 um CMOS)	16Kx1 (1.2um CMOS)			2Kx8 w/ WE, CE1, CE2 (1.2um CMOS)				2Kx8 w/ CE, CS, WE (1.2um CMOS)				2Kx8 w/ CE, OE, WE (1.2um CMOS)			2Kx8 w/ CE, OE, WE (1.2um CMOS)	1Kx4 (3.5 um CMOS)	256x4 (3.5 um CMOS)	Slow Static RAMs Low-Low Power Full CMOS	Organizational Structure P	SHARP Static F
LH511000 LH511000N LH511000T LH511000TR	LH51256 LH51256N	LH5160N LH5160HN	LH5160HD	LH5160D	LH5160	LH5167	LH5118N	LH5118H	LH5118	LH5117N	LH5117H	LH5117D	LH5117	LH5116N	LH5116H	LH5116D	LH5116	LH5115N	LH5115D	LH5115	LH5114H	LH5101		SHARP Part Number	RAM & Dual Po
100/120 ns 100/120 ns 100/120 ns 100/120 ns	100/120 ns 100/120 ns	100 ns 100 ns	100 ns 100 ns	100 ns	100 ns	55/70 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	100 ns	55/70 ns	55/70 ns	55/70 ns	150 ns	300/450 ns		Access Time	SHARP Static RAM & Dual Port Static RAM Availability Guide
1 uA 1 uA 1 uA 1 uA	1 uA 1 uA	1 uA 1 uA	1 uA 1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	1 uA	10 uA	10 uA	10 uA	5 uA	10 uA		Standby Current	ailability Gui
0.6" DIP 0.525" SOP TSOP reverse TSOP	0.6" DIP 0.45"SOP	0.45" SOP 0.45" SOP	0.6" UIP 0.3" SDIP	0.3" SDIP	0.6" DIP	0.3" DIP	0.45" SOP	0.6" DIP	0.6" DIP	0.45" SOP	0.6" DIP	0.3" SDIP	0.6" DIP	0.45" SOP	0.6" DIP	0.3" SDIP	0.6" DIP	0.45" SOP	0.3" SDIP	0.6" DIP	0.3" DIP	0.4" DIP		Package Options	
Jan '91 Jan '91 Apr '91 Apr '91	Nov '90 Oct '90	now	now	now	NOM	call	call	call	call	call	call	call	call	now	Aug '90	now	now	call	call	call	now	NOM		Sample Avail	{7/13/90 update}
Apr '91 Apr '91 Jul '91 Jul '91	Jan '91 Dec '90	now	now call	call	NOM	call	call	call	call	call	call	call	call	now	Sep '90	now	NOM	call	call	call	now	now		Prod Avail	Pa
pending pending pending	yes yes	yes yes	yes yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	pending	Ves	yes	yes		Data Sheet	Page 1
utilizes TFT technology utilizes TFT technology utilizes TFT technology utilizes TFT technology	industrial temperature Industrial temperature	industrial temperature	industrial temperature	industrial temperature				industrial temperature			industrial temperature				industrial temperature									Notes and Features	

:

17

	Feh '01 May '01	32Kx8 (0.8 um CMOS) LH52258AD 15/20/25 ns 1 mA 0.3" SDIP 1991 1991 pe LH52258AK 15/20/25 ns 1 mA 0.3" SOJ 1991 1991 pe	LH52258K 35/45 ns 1 mA 0.3" SOJ now Jul '90 LH52258N 45 ns 1 mA 0.45" SOP Jun '90 Sep '90	1 mA 0.3" SDIP now now	64Kx4 (0.8 um CMOS) LH52253D 15/20 ns 1 mA 0.3" SDIP Apr '91 May '91 pe LH52253K 15/20 ns 1 mA 0.3" SOJ Apr '91 May '91 pe	64Kx4 (1.2 um CMOS) LH52255 35/45 ns n/a 0.3" SDIP now now	64Kx4 (0.8 um CMOS) LH52252BD 15/20 ns 1 mA 0.3" SDIP 1991 1991 pe LH52252BK 15/20 ns 1 mA 0.3" SOJ 1991 1991 pe	64Kx4 (1.0 um CMOS) LH52252AD 25/35 ns 1 mA 0.3" SDIP now now LH52252AK 25/35 ns 1 mA 0.3" SOJ now now	64Kx4 (1.2 um CMOS) LH52252 35/45 ns 1 mA 0.3" SDIP now now	LH52251AK 25/35 ns 1 mA 0.3" SOJ now now	1 H52251AD 25/35 ns 1 mA 0.3" SDIP now now	3) LH52251 35/45 ns 1 mA 0.3" SDIP now now	64Kx1 (1.2 um CMOS) LH5261 25/35 ns 1 mA 0.3" SDIP now now	Fast Static RAMs	1991	55/70/100 ns 1 mA 0.4" DIP 1991 1991	Slow 32Kx8 (1.0 um CMOS) LH52250D 55/70/100 ns 1 mA 0.3" SDIP now now	L 70/90 ns 100 uA 0.45" SOP now now	Slow 32Kx8 (1.2 um CMOS) LH52256 120 ns 2 mA 0.6" DIP now now LH52256L 70/90/120 ns 100 uA 0.6" DIP now now	Slow Static RAMs Mixed MOS	Organizational SHARP Access Standby Package Sample Prod I Structure Part Number Time Current Options Avail S	al Port Static RAM Availability Guide {7/13/90 update}
0.4" SOJ Aug '90 0.4" DIP Mar '91		•	·	-	-	•	-	-	-		•	-	-			-		-				{7/13/90 update
Aug '90 yes May '91 yes		1991 pending 1991 pending	ð		May '91 pending May '91 pending	now yes	1991 pending 1991 pending	now yes now yes	now yes			now yes	now yes		1991 yes		now yes		now yes		Prod Data Avail Sheet	Page 2
limited volume til October	:				Output Enable version Output Enable version	Chip Select version	Chip Enable version Chip Enable version	Chip Enable version Chip Enable version	Chip Enable version												Notes and Features	

SHARP Stat	SHARP Static RAM & Dual Port Static RAM Availability Guide	ort Static RAM Av	ailability Gui	ide (7/13/9	90 update)	Pa	Page 3	
Organizational Structure	SHARP Part Number	Access Time	Standby Current	Package Options	Sample Avail	Prod Avail	Data Sheet	Notes and Features
Dual Port Static RAMs								
2Kx8 Dual Port, Master	LH5911	35/45/55 ns	5 mA *	48-pin DIP	Call	06, Inf	yes	Compatible w/ IDT7132
2Kx8 Dual Port, Master w/ Int	LH5912U	35/45/55 ns	5 mA *	52-pin PLCC	Dec '90	Feb '91	yes	Compatible w/ IDT71321
2Kx8 Dual Port, Slave	LH5914 LH5914U	35/45/55 ns 35/45/55 ns	5 mA * 5 mA *	48-pin DIP 52-pin PLCC	90, Dec 06, Dec	Aug '90 Feb '91	yes yes	Compatible w/ IDT7142 Compatible w/ IDT7142
4Kx8 Dual Port	LH5920 LH5920U	35/45/55 ns 35/45/55 ns	5 mA * 5 mA *	48-pin DIP 52-pin PLCC	Nov '90	Jan '91 Jan '91	yes yes	Compatible w/ IDT7134 Compatible w/ IDT7134
4Kx8 Dual Port, Master w/ Int	LH5926U	35/45/55 ns	5 mA *	52-pin PLCC	Sep '90	Oct '90	yes	w/ Arbitration
4Kx8 Dual Port, Slave	LH5924U	35/45/55 ns	5 mA *	52-pin PLCC	Oct '90	Nov '90	yes	w/ Arbitration
8Kx8 Dual Port w/ Semaphore	LH5933U	25/35/45 ns	TBD	52-pin PLCC	Feb '91	Apr '91	pending	
		* Dual Port SRAM Standby Current with both Enable inputs => Vcc - 0.2 V	ndby Current w	ith both Enable inpu	ts => Vcc - 0.2	V		
		across the full operating temperature range	ting temperature	a range				
Wide-Word Static RAMs								
Slow 16Kx18 (0.8 um CMOS)	LH52270 LH52270U	45/55 ns 45/55 ns	TBD TBD	48-pin DIP 52-pin PLCC	May-91 May-91	Jul-91 Jul-91	pending pending	
Fast 16Kx18 (0.8 um CMOS)	LH52278 LH52278U	20/25/30 ns 20/25/30 ns	TBD TBD	48-pin DIP 52-pin PLCC	May-91 May-91	Jul-91 Jul-91	pending pending	
Slow 64Kx18 (0.8 um CMOS)	LH521020 LH521020U	45/55 ns 45/55 ns	tbd Tbd	48-pin DIP 52-pin PLCC	Apr-91 Apr-91	Jun-91 Jun-91	pending pending	
Fast 64Kx18 (0.8 um CMOS)	LH521028 LH521028U	20/25/30 ns 20/25/30 ns	tbd tbd	48-pin DIP 52-pin PLCC	Mar-91 Mar-91	May-91 May-91	yes yes	

19