KM110B/4

DESCRIPTION

The KM110B/4 is a sensitive magnetic field sensor, employing the magnetoresistive effect of thin-film permalloy. The combination of a magnetorisistive sensor with a Ferroxdure FXD100 magnet and a special 30° magnetization enables the sensor to be used as a revolution sensor or proximity detector. The offset voltage of the KM110B/4 is magnetically trimmed during the magnetization process. The strength of the magnetic field caused by the Ferroxdure FXD100 magnet in the different sensor directions is typically: $H_{\rm x}=7$ kA/m (auxiliary field and measured at the centre of the magnetoresistive bridge). $H_{\rm z}=17$ kA/m (perpendicular to the sensor surface). $H_{\rm y}$ is zero due to the trimming process.

PINNING

PIN	SYMBOL	DESCRIPTION
1	+V _O	output voltage
2	GND	ground
3	-V _O	output voltage
4	+V _{CC}	supply voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC}	DC supply voltage	_	5	-	٧
T _{bridge}	bridge operating temperature	-40	_	+150	°C
R _{bridge}	bridge resistance	1.6	2.1	2.6	kΩ
V _{offset}	offset voltage	-0.5	_	+0.5	mV/V

CIRCUIT DIAGRAM

KM110B/4

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	DC supply voltage		_	12	V
P _{tot}	total power dissipation	up to T _{amb} = 130 °C	-	120	mW
H _D	external disturbing field	see note 1	_	32	kA/m
T _{stg}	storage temperature		-40	+150	°C
T _{bridge}	bridge operating temperature	see note 2	-40	+150	°C
T _{bridge peak}	peak bridge operating temperature	max. 3 times ≤1h during lifetime; see notes 2 and 3	_	190	°C

Notes

- It is not permitted to press two sensors together against the magnetic forces, due to their own magnetic field (H ≥ 50 kA/m close to the magnetic poles).
- 2. Maximum operating temperature of the thin-film permalloy.
- 3. Maximum temperature gradient: 5 °C/minute.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	180	K/W

CHARACTERISTICS

 T_{bridge} = 25 °C; V_{CC} = 5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
R _{bridge}	bridge resistance		1.6	2.6	kΩ
V _{offset}	offset voltage	notes 1 and 4	-0.5	+0.5	mV/V
s	sensitivity	notes 2 and 4	1.5	2.2	$\frac{mV/V}{kA/m}$
f _{oper}	operating frequency	note 3	0	1	MHz
TCV _{offset}	temperature coefficient of offset voltage	$T_{\text{bridge}} = -25 \text{ to} + 100 \text{ °C}; \text{ note } 1$	- 5	+5	(μV/V)/K
TCR _{bridge}	temperature coefficient of bridge resistance	T _{bridge} = -25 to + 100 °C	_	0.4	%/K
TCS	temperature coefficient of sensitivity	T _{bridge} = -25 to + 100 °C	0.25	0.31	%/K

Notes

1. Measured in an environment without external fields and ferromagnetic materials.

2.
$$S = \frac{(V_O \text{ at } H_y = 1.6 \text{ kA/m}) - (V_O \text{ at } H_y = 0)}{1.6 \times V_{CC}}$$
.

- 3. Only sensor bridge response. When sensing high speed rotation, the operating frequency may be reduced due to eddy current effects.
- 4. The sensitivity increases and decreases linear with the supply voltage, thus the static output voltage is directly proportional to the supply voltage.

KM110B/4

KM110B/4

PACKAGE OUTLINE

Dimensions in mm.

- (1) Terminal dimensions uncontrolled within this area.
- (2) Position of sensor chip.

Fig.5 Outline of the KM110B/4.