

Linear Power Transistors HXTR-5002 Chip

Technical Data

Features

- High Output Power
 29 dBm Typical P_{1dB} at 2 GHz
 27.5 dBm Typical P_{1dB} at 4 GHz
- High Gain 11.5 dB Typical G_{1db} at 2 GHz 7 dB Typical G_{1db} at 4 GHz
- 7 dB Typical G_{1dB} at 4 GHz • P_{ese} +30 dBm at 2 GHz (Common Collector)
- Emitter Ballast Resistors
- Hermetic Package

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer or collet and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310 \pm 10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

HPAC-200GB/GT

HXTR-4103 HXTR-5102

HPAC-200 HXTR-5104

Note: See the Package Outline section, page 16-7, for complete dimensions. HXTR-4103 HXTR-5102, TX and TXV HXTR-5104, TX and TXV

Description

The HXTR-5002 is an NPN silicon bipolar transistor chip designed for high output power and gain at VHF, UHF, and microwave frequencies. The chip is silicon nitride passivated, and has TaN ballast resistors for ruggedness.

The HXTR-5002 chip is available in two package styles. Both the common-collector HXTR-4103 and the common-emitter HXTR-5102 are supplied in the HPAC-200 GB/GT, while the common-emitter HXTR-5104 is supplied in an HPAC-200. Both the HPAC-200GB/GT and HPAC-200 are metal/ceramic hermetic packages with a BeO heat conductor. All of these parts are capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

The HXTR-5102 contains partial internal matching which makes it ideal for broad bandwidth designs in the 2 to 5 GHz range. The excellent power, gain and distortion performance of the devices make them ideal for use in radar, ECM, space, and other commercial and military communication applications.

Electrical Specifications	(HXTR-5002,	HXTR-5102)
----------------------------------	-------------	------------

		Test Method		нх	TR-500	2 [1]	HXTR-5102 ⁽¹⁾			
Symbol	Parameters and Test Conditions	MIL- STD-750	Units	Min.	Тур.	Max.	Min.	Typ.	Max.	
BVCBQ	Collector-Base Breakdown Voltage at $I_c = 10 \text{ mA}$	3001*	v	40			40			
BV _{CEO}	Collector-Emitter Breakdown Voltage at $I_c = 50 \text{ mA}$	3011*	v	24			24			
BV ₈₈₀	Emitter-Base Breakdown Voltage at $I_s = 100 \ \mu A$	3026*	v	3.3			3.3			
I _{ebo}	Emitter-Base Leakage Current at $V_{EB} = 2 V$	3061	μA			5			б	
I _{ces}	Collector-Emitter Leakage Current at $V_{cE} = 32 V$	3041**	nA			200			200	
I _{CBO}	Collector-Base Cutoff Current at $V_{ca} = 20 V$	3036**	nA			100			100	
h _{ys}	Forward Current Transfer Ratio $V_{cE} = 18 V, I_c = 110 mA$	3076*		15	40	85	15	40	85	
P ₁₄₃	Power Output at 1 dB $f = 2$ GIGain Compression4 GI $V_{cE} = 18$ V, $I_c = 110$ mA		dBm		29.0 27.5		26.5	29.0 27.5		
G ₁₄₈			dB		11.5 7.5		6.0	11.5 7.0		
PBAT	Saturated Power Output (8 dB Gain) $f = 2$ GP $V_{CE} = 18$ V, $I_c = 110$ mA (3 dB Gain) $f = 4$ GP		dBm		31.0 29.5			31.0 29.5		
η	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Hz Hz	<i>%</i>		38 23			37 23		
в,	Third Order Intercept Point $f = 4$ G V _{CE} = 18 V, I _c = 110 mA	Iz	dBm		37			36		
C _{eb}	$\label{eq:response} \begin{array}{ll} Reverse \mbox{ Transfer Capacitance } & f=1\ M \\ HXTR-5002, \ -5102; \\ I_c=0\ mA,\ V_{cg}=10\ V \end{array}$	Hz	pF					0.73		

*300 µs wide pulse measurement at ≤ 2% duty cycle **Measured under low ambient light conditions, for chip only.

Notes: 1. T_A = 25°C 2. T_{CASE} = 25°C

.

	a		
Electrical	Specifications	(HXTR-5104,	HXTR-4103)

		Test Method MIL-		HXTR-5104 ¹¹¹			HXTR-4103 (1)		
Symbol	Parameters and Test Conditions	STD-750	Units	Min.	Тур.	Max.	Min.	Тур.	Max.
BV _{cbo}	Collector-Base Breakdown Voltage at $I_c = 10 \text{ mA}$	3001*	v	40			40		
BVGEQ	Collector-Emitter Breakdown Voltage at $I_c = 50 \text{ mA}$	3011*	v	24					
BV	Emitter-Base Breakdown Voltage at $I_s = 100 \ \mu A$	3026*	v	3.3					
I _{ebo}	Emitter-Base Leakage Current at $V_{gg} = 2 V$	3061	μA			10			б
ICES	Collector-Emitter Leakage Current at V _{CE} = 32 V	3041**	nA			200			
I _{CBO}	Collector-Base Cutoff Current at $V_{c_B} = 20 V$	3036**	nA			100			100
h _{FE}	Forward Current Transfer Ratio $V_{CE} = 18 \text{ V}, I_C = 110 \text{ mA}$	3076*		15	40	85	15		75
f _T	Gain Bandwidth Product at V _{CE} = 18 V, I _c = 110 mA		GHz			·		4	- <u> </u>
P ₁₄₈	Power Output at 1 dB $f = 2 \text{ GHz}$ Gain Compression $V_{GE} = 18 \text{ V}, I_C = 110 \text{ mA}$		dBm	28,0	29.0				
G _{IdB}	Associated 1 dB Compressed Gain $f = 2 \text{ GHz}$ V _{CE} = 18 V, I _c = 110 mA		dB	8.0	9.0				
Posc	Oscillation Power at $f = 2 \text{ GHz}$ V _{CE} = 18 V, I _c = 130 mA		dBm					30	
P _{sat}	Saturated Power Output (8 dB Gain) $f = 2 \text{ GHz}$ $V_{CE} = 18 \text{ V}, I_{c} = 110 \text{ mA}$		dBm		31.0				
ηC			%					43	
η	Power-Added Efficiency at 1 dB Compression $f = 2 \text{ GHz}$ $V_{cE} = 18 \text{ V}, I_c = 110 \text{ mA}$		%		35				
IP,	$ \begin{array}{ll} \mbox{Third Order Intercept Point} & f=2\ \mbox{GHz} \\ V_{cE} = 18\ \mbox{V}, \ I_c = 110\ \mbox{mA} \end{array} $		dBm		37				
C.,	$\label{eq:resonance} \begin{array}{ll} \text{Reverse Transfer Capacitance} & \text{f} = 1 \ \text{MHz} \\ \text{HXTR -5104: } I_{\text{c}} = 0 \ \text{mA}, \ \text{V}_{\text{cB}} = 10 \ \text{V} \\ \text{HXTR-4103: } I_{\text{c}} = 0 \ \text{mA}; \ \text{V}_{\text{cB}} = 18 \ \text{V} \end{array}$		pF		0,70			2.7	

*300 μs wide pulse measurement at ≤ 2% duty cycle **Measured under low ambient light conditions, for chip only.

Notes: 1. T_{CABE} = 25°C

Absolute	Maximum	Ratings*
----------	---------	----------

Symbol	Parameter	HXTR-5002 ^[1] (T _A = 25°C)	HXTR-4103/5102/5104 ^[2] (T _{CASE} = 25°C)
V _{CBO}	Collector to Base Voltage	45 V	45 V
VCEO	Collector to Emitter Voltage	27 V	27 V
VEBO	Emitter to Base Voltage	4 V	4 V
I.	DC Collector Current	250 mA	250 mA
₽	Total Device Dissipation	4 W	4 W
T,	Junction Temperature	200°C	200°C
I _C P _T T _J T _{STO}	Storage Temperature	-65°C to 300°C	-65°C to 200°C
-	Lead Temperature		250°C
	(Soldering 10 seconds each lead)		

20E D

*Operation in excess of any one of these conditions may result in permanent damage to this device. Notes:

1. Power dissipation derating for the HXTR-5002 should include a θ_{ij} (Junction-to-Back contact thermal resistance) of 35°C/W. Total θ_{ij} (Junction to Ambient) will be dependent upon the heat sinking provided in the individual application. 2. A θ_{ij} maximum of 35°C/W for the HXTR-5102/4103, and 40°C/W for the HXTR-5104 should be used for derating and junction temperature calculations ($T_j = P_p \times \theta_{jc} + T_{CASE}$).

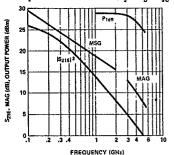


Figure 1. Typical $|S_{31E}|^2$, MAG and P₄₄₈ Lincar Power vs. Frequency ($V_{CE} = 18 \text{ V}, I_{c} = 110 \text{ mA}$), for the HXTR-5002.

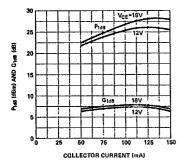


Figure 4. Typical P_{14B} Linear Power and Associated 1 dB Compressed Gain vs. Collector Current ($V_{CE} = 12$ V and 18 V at 4 GHz), for the HXTR-5002.

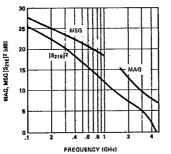


Figure 2. Typical MAG, Maximum Stable Gain (MSG) and $|S_{21E}|^2$ vs. Frequency ($V_{CE} = 18$ V, $I_C = 110$ mA), for the HXTR-5102.

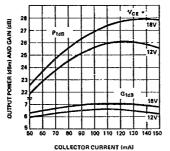


Figure 5, Typical P_{1dB} and Associated 1 dB Compressed Gain vs. Collector Current (V_{CE} = 12 V and 18 V at 4 GHz), for the HXTR-5102.

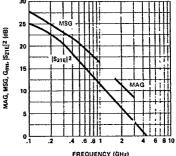
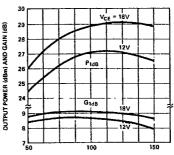
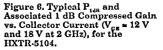




Figure 3. Typical MAG, Maximum Stable Gain (MSG), and $|S_{ab}|^*$ vs. Frequency ($V_{cb} = 18$ V, $I_c = 110$ mA), for the HXTR-5104.

COLLECTOR CURRENT (mA)

0986

-

30

T-33-05

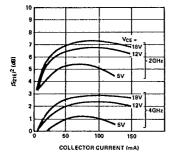



Figure 7. Typical $|S_{21E}|^2$ vs. Collector Current at 2 and 4 GHz, for the HXTR-5102.

Figure 10. Typical P_{140} Linear Power and Associated 1 dB Compressed Gain vs. Frequency at $V_{0,n} = 18 V, I_0 = 110 \text{ mA}$, for the HXTR-5104.

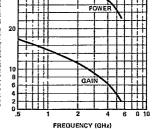
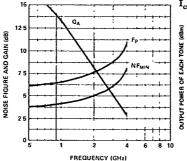



Figure 8. Typical $|S_{21E}|^2$ vs. Collector Current at 1 and 2 GHz, for the HXTR-5104.

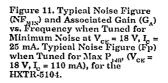


Figure 9. Typical P_{1db} and Associated 1 dB Compressed Gain vs. Frequency ($V_{cg} = 18$ V, $I_c = 110$ mA), for the HXTR-5102.

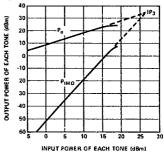
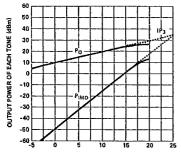



Figure 12. Typical Two Tone Third Order Intermodulation Distortion at 4 GHz for the HXTR-5102 at a Frequency Separation of 5 MHz $(V_{CE} = 18 V, I_{g} = 110 \text{ mA}).$

INPUT POWER OF EACH TONE (dBm)

Figure 13. Typical Two Tone Third Order Intermodulation Distortion at 2 GHz for the HXTR-5104 at a Frequency Separation of 5 MHz $(V_{cg} = 18 V, I_c = 110 mA)$.

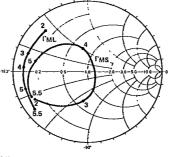


Figure 14. Typical Γ_{MS} , Γ_{NL} (Calculated from the Average S-Parameters) in the 2 to 5.5 GHz Frequency Range ($V_{cr} = 18$ V, $I_c = 110$ mA), for the HXTR-5102.

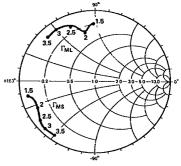


Figure 15. Typical Γ_{MS} , Γ_{ML} (Calculated from the Average S-Parameters) in the 1.5 to 3.5 GHz Frequency Range ($V_{CE} = 18$ V, $I_{o} = 110$ mA), for the HXTR-5104

0987

20-A

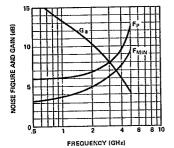


Figure 16, Typical Noise Figure (NF_{MIN}) and Associated Gain (G_A) when Tuned for Minimum Noise vs. Frequency V_{cx} = 18 V, I₀ = 25 mA), Typical Noise Figure (Fp) when Tuned for Max P1dB (V_{cx} = 18 V, I₀ = 110 mA), for the HXTR-5102.

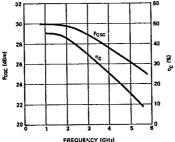
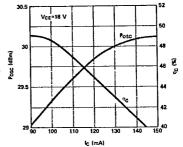
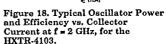




Figure 17. Typical Oscillator Power and Efficiency vs. Frequency at $V_{\rm QF}$ = 18 V, I₀ = 130 mA, for the HXTR-4103.

Current at f = 2 GHz, for the HXTR 4103.

Dura	S,	1		S ₂₁		S ₁₂			S ₃₃	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
0.100	0.55	-61	25.4	19.7	156	-31.6	0.03	68	0.93	-26
0.200	0.65	-98	24.2	16.2	133	-27.3	0.04	50	0.76	-48
0.300	0.72	-119	22.3	13,1	125	-25.6	0.05	39	0.63	-50
0,400	0.76	-132	20,6	10.7	117	-24.8	0.06	32	0.53	-71
0.500	0,79	-141	19.1	9.01	111	-24.4	0.06	27	0.45	-78
0.600	0.80	-147	17.8	7.73	106	-24.1	0.06	24	0.40	-84
0.700	0.81	-151	16.6	8,74	102	-24.0	0.06	22	0.38	-89
0.800	0.81	-155	15.5	5.97	99	-23,8	0.06	20	0.33	-93
0.900	0.82	-158	14.6	5,35	97	-23.7	0.06	19	0.31	-98
1.000	0.82	-160	13.7	4.84	94	-23.7	0.06	18	0.30	-99
1.500	0.83	-167	10.3	3.29	86	-23.4	0.07	16	0.25	-109
2,000	0.83	-170	7.9	2.49	80	-23.3	0.07	16	0.24	-114
2,500	0,83	-173	6.0	2.00	74	-23.1	0.07	17	0.24	-117
3,000	0.83	-174	4.5	1.68	69	-22.9	0.07	18	0.25	-118
3,500	0.83	-175	3.2	1.44	64	-22.6	0.07	19	0.27	-119
4.000	0.83	-176	2,1	1.27	60	-22.4	0.08	20	0.28	-120
4.500	0.83	-177	1.1	1,13	55	-22.1	0.08	21	0.30	-121
5.000	0.83	-177	0.3	1.03	51	-21.9	0.08	21	0.32	-121
5,500	0.83	-178	-0.5	0.94	47	-21.6	0.08	22	0.34	-122
6.000	0.83	-178	-1.2	0.87	43	-21,4	0.08	22	0.35	-123

HXTR-5002 Typical Common Emitter S-Parameters (V_{CE} = 18 V, I_{c} = 110 mA)*

*Values do not include any parasitic bonding inductances and were generated by use of a computer mdel.

RF Equivalent Circuit See page 3-7.

-

Freq.	s	11		S ₂₁			S ₁₂		S ₂	2
(MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.55	-74	25.4	18.60	146	-31	0.03	56	0.85	-29
200	0.65	-109	22.7	13.60	123	-28	0.04	39	0.68	-4'
300	0.70	-134	20.8	10.90	108	-27	0.05	28	0.55	-59
400	0.72	-144	18.8	8.47	97	-26	0.05	21	0.48	-6
500	0.74	-158	17.2	7,22	88	-26	0.05	17	0.42	-74
600	0.73	-160	15.6	5.99	81	-25	0.05	13	0.41	-71
700	0.74	-167	14.6	5.39	76	-25	0.05	11	0.39	-7
800	0.74	-170	13.4	4.66	69	-25	0.06	8	0.39	-8
900	0.74	-175	12.7	4.32	64	-25	0.06	8	0.38	-8
1000	0.74	-178	11.8	3.91	59	-25	0.06	7	0.37	-9
1500	0.71	166	9.0	2,82	34	-24	0.06	-2	0.43	-10
2000	0.64	153	7.3	2.32	10	-23	0.07	-8	0.51	-11
2500	0,52	140	6.3	2.07	-17	-22	0.08	-22	0.61	-13
3000	0.32	129	5.4	1.86	-49	-21	0.09	-42	0.73	-14
3500	0.15	158	3.8	1.55	-83	-20	0.09	-67	0.77	-16
4000	0.32	-145	2.8	1.38	-113	-22	0.08	-98	0.80	-17
4500	0.52	-158	0.0	1.00	-142	-24	0.06	132	0.82	17
5000	0.70	176	-1.9	0.81	-170	-28	0.04	50	0.87	15
5500	0.78	155	-3.0	0.71	161	-28	0.04	85	0.83	14
6000	0.85	119	-3.9	0.64	121	-19	0.11	16	0.93	12

HXTR-5102 Typical Common Emitter S-Parameters (V_{cv} = 18 V, L = 110 mA)

HXTR-5104 Typical Common Emitter S-Parameters (V_{CE} = 18 V, I_{c} = 110 mA)

Freq.	S	ı		\mathbf{S}_{21}			\mathbf{S}_{12}		S ₂	1
(MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.48	-68	24.8	17.30	140	-31	0.03	82	0.86	-27
200	0.54	-109	22.6	13.50	127	-27	0.04	48	0.69	-46
300	0.59	-132	20.4	10.50	112	-26	0.05	40	0.55	-58
400	0.61	-146	18.5	8.43	102	-25	0.06	38	0.47	-66
500	0.63	-155	16.9	7.02	94	-24	0.06	34	0.41	-71
600	0.64	-162	15.5	5.98	88	-24	0.06	33	0.38	-76
700	0.65	-168	14.3	5.21	83	-24	0.07	33	0.35	-80
800	0.65	-172	13.3	4.62	78	-23	0.07	33	0.34	-84
900	0.65	-176	12.4	4.15	73	-23	0.07	33	0.32	-87
1000	0.64	179	11.5	3.70	69	-22	0.08	32	0.32	-90
1500	0.65	169	8.2	2.57	50	-20	0.10	31	0.32	-104
2000	0.65	151	6.0	1.99	33	-19	0.11	30	0.33	-118
2500	0.66	139	4.3	1.64	17	-17	0.14	25	0.39	-130
3000	0.65	128	2.9	1.40	2	-16	0.16	20	0.42	-140
3500	0.64	115	1,8	1.23	-13	-15	0.19	14	0,46	-152
4000	0.63	103	0.9	1.11	-27	-13	0.22	5	0.51	-1 61
4500	0.61	87	0.2	1.03	-41	-12	0.26	-2	0.53	-172
5000	0.59	72	-0.7	0.93	-54	-11	0.29	-12	0.57	179
5500	0.58	53	-1.6	0.84	-67	-10	0.34	-22	0.57	167
6000	0.58	38	-2.3	0.77	-79	-9	0.37	-31	0.60	155

0989 A-04

Freq.	S ₁₁		S ₂₁		S	12	S22		
(MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang	
1000	0.96	-79	1.67	-56	0.30	24	0.79	130	
2000	1.01	-144	1.32	-104	0.47	-24	0.80	95	
3000	1.06	164	1.02	-146	0.58	-69	0.50	77	
4000	1.10	120	0.84	177	0.60	-111	0.45	68	
5000	1,20	74	0.85	142	0.80	-148	0.41	45	
6000	1,23	-37	1.08	68	1.32	136	0.11	164	
7000	0.84	157	0.15	-8	0.48	58	0.59	76	
8000	0.67	99	0.36	78	0.41	68	0.36	64	

HXTR-4103 Typical Common Collector S-Parameters ($V_{CE} = 18$ V, $I_{c} = 130$ mA)

High Reliability Testing*

Two basic levels of High-Reliability testing are offered.

- 1. The TX suffix indicates a part that is preconditioned and screened to the program shown in Table II and III, and is marked with an orange dot.
- 2. The TXV suffix indicates that an internal visual inspection per MIL-STD-750 Method 2072 is included as part of the preconditioning screening and is marked with a green dot.

Group B quality conformance inspections are performed on each inspection lot in accordance with Table IVb. Group C quality conformance inspections are performed periodically at six month intervals in accordance with Table V.

*Please refer to MIL-S-19500 for Tables II, III, IVb, and V. High power visual performed on die prior to assembly.

Part Number System for Order and RFQ Information

· _]	Part Number Prefix	Screening Level			
	HXTR-5102 HXTR-5104	Commercial			
	HXTR-5102TX HXTR-5104TX	100% Screen (per Tables II and III)			
	HXTR-5102TXV HXTR-5104TXV	100% Screen and Internal Visual			

.

100% Screen	Screened per MIL-S-1 and conditions:	9500, Table II, TX or TXV with the following specified tests					
	Pre Burn In Tests (Screen 11)*	All DC parameters; BV_{CEO} , BV_{CEO} , I_{CEO} , I_{CEO} and h_{FE} at 25°C, per data sheet Electrical Specifications table					
	Burn In Conditions (Screen 12)*	HXTR-5102 $P_{T} = 2500 \text{ mW}, T_{A} = 25^{\circ}\text{C}$					
		HXTR-5104 $P_{T} = 1130 \text{ mW}, T_{A} = 25^{\circ}\text{C}$					
	Post Burn In Tests and Deltas (Screen 13)*	All DC parameters; BV_{CBO} , I_{CBO} , I_{CEO} , and h_{FE} at 25°C, per data sheet Electrical Specifications table					
	(Beleen 13)	Delta Limits: $\Delta I_{CES} = \pm 50$ nA or 100%, whichever is greater $\Delta I_{CBO} = \pm 25$ nA or 100%, whichever is greater $\Delta h_{FE} = \pm 25\%$					
Group A	Per MIL-S-19500, Tak	ole III, and the following:					
-	Subgroup 2	$BV_{\rm CBO},BV_{\rm CEO},BV_{\rm EBO},I_{\rm EBO},I_{\rm CES},I_{\rm CBO}$ and $h_{\rm FE}$ per data sheet Electrical Specifications table					
	Subgroup 3	$T_A = +150^{\circ}C$, $I_{CHO} = 10 \mu A$ at $V_{CB} = 20 V$ $T_A = -55^{\circ}C$, $h_{FE} = 5 minimum$ at $I_C = 110 mA$, $V_{CE} = 10 V$					
	Subgroup 4	P_{IdB} and G_{IdB} per data sheet Electrical Specifications table					
	Subgroups 5, 6, and 7 are not applicable.						
Group B		ole IVb. End point tests per Group A Subgroup ing conditions and exceptions:					
	Subgroup 3	Operating Life conditions same as 100% burn-in.					
	except Subgroup 4	SEM, done prior to assembly					
		HXTR-5102 Bond pull done at assembly, slygard at sealing covers chip					
	except Subgroup 5	Thermal resistance, per MIL-STD-750 Method 3151					
Group C	Per MIL-S-19500, Tab and with the following	ole V. No exceptions. End point tests per Group A Subgroup 2, g conditions:					
	Subgroup 6	Operating Life conditions same as 100% burn-in.					

*Refer to MIL-S-19500 screen numbers.