

Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
N－Channel Logic Level UltraFET Power MOSFET 60 V， 71 A， $14 \mathrm{~m} \Omega$

Packaging

JEDEC TO－263AB

Symbol

Features

－Ultra Low On－Resistance
－$r_{D S(O N)}=0.012 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
－$r_{D S(O N)}=0.014 \Omega, V_{G S}=5 \mathrm{~V}$
－Simulation Models
－Temperature Compensated PSPICE® and SABER ${ }^{\text {TM }}$ Electrical Models
－Spice and SABER Thermal Impedance Models
－www．fairchildsemi．com
－Peak Current vs Pulse Width Curve
－UIS Rating Curve
－Switching Time vs R_{GS} Curves

Ordering Information

PART NUMBER	PACKAGE	BRAND
HUF76439S3ST	TO－263AB	76439 S

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ，Unless Otherwise Specified		
	HUF76439S3ST	UNITS
Drain to Source Voltage（Note 1）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．V V ${ }_{\text {DSS }}$	60	V
Drain to Gate Voltage（ $\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$ ）（Note 1）．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathrm{V}_{\text {DGR }}$	60	V
Gate to Source Voltage ．．．$V_{\text {GS }}$	± 16	V
Drain Current		
	75	A
	75	A
Continuous（ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{V}_{G S}=5 \mathrm{~V}$ ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． I_{D}	54	A
Continuous（ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{V}_{G S}=4.5 \mathrm{~V}$ ）（Figure 2）．．．．．．．．．．．．．．．．．．．．．．．．．． I_{D}	52	A
Pulsed Drain Current ．．${ }^{\text {IDM }}$	Figure 4	
Pulsed Avalanche Rating ．．Ul U	Figures 6，17， 18	
Power Dissipation ．． PD $^{\text {P }}$	180	W
Derate Above $25^{\circ} \mathrm{C}$	1.20	W／${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．TJ，TSTG	－55 to 175	${ }^{\circ} \mathrm{C}$
Maximum Temperature for Soldering		
Leads at 0．063in（1．6mm）from Case for 10s．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． T $_{\text {L }}$	300	${ }^{\circ} \mathrm{C}$
Package Body for 10s，See Techbrief TB334．．．．．．．．．．．．．．．．．．．．．．．．．．．T $\mathrm{T}_{\text {pkg }}$	260	${ }^{\circ} \mathrm{C}$
NOTES：		
1． $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ．		

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

HUF76439S3S

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS						
Drain to Source Breakdown Voltage	$B V_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Figure 12)	60	-	-	V
		$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ (Figure 12)	55	-	-	V
Zero Gate Voltage Drain Current	${ }^{\text {D }}$ SS	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
Gate to Source Leakage Current	$I_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 16 \mathrm{~V}$	-	-	± 100	nA
ON STATE SPECIFICATIONS						
Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ (Figure 11)	1	-	3	V
Drain to Source On Resistance	$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Figures 9, 10)	-	0.010	0.012	Ω
		$\mathrm{I}_{\mathrm{D}}=54 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$ (Figure 9)	-	0.0117	0.014	Ω
		$\mathrm{I}_{\mathrm{D}}=52 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ (Figure 9)	-	0.0125	0.015	Ω
THERMAL SPECIFICATIONS						
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {ӨJC }}$	TO-263AB	-	-	0.96	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {®JA }}$		-	-	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SWITCHING SPECIFICATIONS ($\left.\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}\right)$						
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=52 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=3.9 \Omega \\ & \text { (Figures } 15,21,22) \end{aligned}$	-	-	470	ns
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$		-	16	-	ns
Rise Time	t_{r}		-	300	-	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	29	-	ns
Fall Time	t_{f}		-	105	-	ns
Turn-Off Time	toff		-	-	200	ns
SWITCHING SPECIFICATIONS ($\left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$						
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GS}}=3.9 \Omega \\ & \text { (Figures } 16,21,22 \text {) } \end{aligned}$	-	-	205	ns
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$		-	11	-	ns
Rise Time	t_{r}		-	125	-	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	45	-	ns
Fall Time	t_{f}		-	125	-	ns
Turn-Off Time	toff		-	-	255	ns
GATE CHARGE SPECIFICATIONS						
Total Gate Charge	$\mathrm{Q}_{\mathrm{g}(\mathrm{TOT})}$	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \\ \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \\ \text { (Figures } 14,19,20) \end{array} \end{aligned}$	-	70	84	nC
Gate Charge at 5V	$Q_{g(5)}$		-	38	45	nC
Threshold Gate Charge	$Q_{g(T H)}$		-	2.5	3	nC
Gate to Source Gate Charge	Q_{gs}		-	8	-	nC
Gate to Drain "Miller" Charge	Q_{gd}		-	19	-	nC
CAPACITANCE SPECIFICATIONS						
Input Capacitance	CISS	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ (Figure 13)	-	2745	-	pF
Output Capacitance	$\mathrm{C}_{\text {OSS }}$		-	840	-	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		-	145	-	pF

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	$\mathrm{I}_{\mathrm{SD}}=54 \mathrm{~A}$	-	-	1.25	V
		$I_{S D}=27 \mathrm{~A}$	-	-	1.00	V
Reverse Recovery Time	t_{rr}	$\mathrm{I}_{\mathrm{SD}}=54 \mathrm{~A}, \mathrm{dI} \mathrm{SD}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	72	ns
Reverse Recovered Charge	Q_{RR}	$\mathrm{I}_{\mathrm{SD}}=54 \mathrm{~A}, \mathrm{dl} \mathrm{SD}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	140	nC

Typical Performance Curves

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. PEAK CURRENT CAPABILITY

Typical Performance Curves (Continued)

FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 8. SATURATION CHARACTERISTICS

FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 15. SWITCHING TIME vs GATE RESISTANCE

FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

FIGURE 16. SWITCHING TIME vs GATE RESISTANCE

Test Circuits and Waveforms

FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 19. GATE CHARGE TEST CIRCUIT

FIGURE 21. SWITCHING TIME TEST CIRCUIT

FIGURE 18. UNCLAMPED ENERGY WAVEFORMS

FIGURE 20. GATE CHARGE WAVEFORMS

FIGURE 22. SWITCHING TIME WAVEFORM

PSPICE Electrical Model

.SUBCKT HUF76439213; rev 17 June 1999

CA $1283.70 \mathrm{e}-9$
CB $15143.80 \mathrm{e}-9$
CIN 6 82.60e-9

DBODY 75 DBODYMOD
DBREAK 511 DBREAKMOD
DPLCAP 105 DPLCAPMOD

EBREAK 117171866.25
EDS 148581
EGS 138681
ESG 610681
EVTHRES 6211981
EVTEMP 20618221

S1A 612138 S1AMOD
S1B 1312138 S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD
VBAT 2219 DC 1
ESLC 5150 VALUE $=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51)))^{*}\left(\operatorname{PWR}\left(\mathrm{~V}(5,51) /\left(1 \mathrm{e}-6^{*} 225\right), 3.5\right)\right)\right\}$

```
MODEL DBODYMOD D (IS = 2.52e-12 RS = 3.53e-3 TRS1 = 1.79e-3 TRS2 = 1.27e-6 CJO = 2.82e-9 TT = 4.90e-8 M = 0.43)
MODEL DBREAKMOD D (RS = 1.95e- 1TRS1 = 9.01e- 4TRS2 = 2.07e-6)
.MODEL DPLCAPMOD D (CJO =2.28e- 9IS = 1e-30 M =0.85)
MODEL MMEDMOD NMOS (VTO = 1.88 KP = 2.1 IS = 1e-30 N = 10 TOX = 1 L= 1u W = 1u RG = 0.88)
.MODEL MSTROMOD NMOS (VTO = 2.31 KP = 137 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.8 RS = 0.1)
MODEL RBREAKMOD RES (TC1 = 1.19e- 3TC2 =-1.91e-7)
MODEL RDRAINMOD RES (TC1 = 1.15e-2 TC2 = 3.07e-5)
.MODEL RSLCMOD RES (TC1 = 9.92e-4 TC2 = 1.23e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
MODEL RVTHRESMOD RES (TC1 = -2.65e-3 TC2 = -7.94e-6)
MODEL RVTEMPMOD RES (TC1 =-1.39e- 3TC2 =-2.13e-7)
```

MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF $=0.1$ VON $=-6.0$ VOFF $=-2.5$)
MODEL S1BMOD VSWITCH (RON =1e-5 ROFF $=0.1$ VON $=-2.5$ VOFF $=-6.0$)
MODEL S2AMOD VSWITCH (RON $=1 \mathrm{e}-5$ ROFF $=0.1$ VON $=-0.5$ VOFF $=0.0$)
MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF $=0.1$ VON $=0.0$ VOFF $=-0.5$)
.ENDS

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical ModeI

REV 17 June 1999
template ta76445 n2,n1,n3
electrical n2,n1,n3
\{
var i iscl
d. . model dbodymod $=($ is $=2.52 \mathrm{e}-12, \mathrm{cjo}=2.82 \mathrm{e}-9, \mathrm{tt}=4.90 \mathrm{e}-8, \mathrm{~m}=0.43)$
d..model dbreakmod =
d.. model dplcapmod $=($ cjo $=2.28 \mathrm{e}-9$, is $=1 \mathrm{e}-30, \mathrm{~m}=0.85)$
m. . model $\mathrm{mmedmod}=\left(\right.$ type $=_\mathrm{n}$, vto $=1.88, \mathrm{kp}=2.1$, is $=1 \mathrm{e}-30$, tox $=1$)
m. . model mstrongmod $=($ type $=\mathrm{n}$, vto $=2.31, \mathrm{kp}=137$, is $=1 \mathrm{e}-30$, tox $=1$
m..model mweakmod $=($ type $=n$, vto $=1.65, \mathrm{kp}=0.05$, is $=1 \mathrm{e}-30$, tox $=1$)
sw vcsp..model s1amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-6$, voff $=-2.5$)
sw_vcsp..model s1bmod $=$ (ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-2.5$, voff $=-6$) sw_vcsp..model s2amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-0.5$, voff $=0)$ sw_vcsp..model s2bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=0$, voff $=-0.5$)
c.ca $\mathrm{n} 12 \mathrm{n} 8=3.70 \mathrm{e}-9$
c.cb n15 n14 $=3.80 \mathrm{e}-9$
c.cin n6 n8 = 2.60e-9
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
.Idrain n2 n5 = 1e-9
I.Igate n1 n9 = 5.17e-9
I.Isource n3 n7 $=2.33 \mathrm{e}-9$

mmmedn16n6n8n8m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m. mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 = 1, tc1 = 1.19e-3, tc2 = -1.91e-7
res.rdbody n71 n5 $=3.53 \mathrm{e}-3$, tc1 $=1.79 \mathrm{e}-3$, tc2 $=1.27 \mathrm{e}-6$ res.rdbreak n72 n5 $=1.95 \mathrm{e}-1$, tc $1=9.01 \mathrm{e}-4$, tc2 $=2.07 \mathrm{e}-6$ res.rdrain n50 n16 $=4.72 \mathrm{e}-3$, tc1 $=1.15 \mathrm{e}-2$, tc2 $=3.07 \mathrm{e}-5$ res.rgate n9 n20 $=0.88$
res.rldrain $\mathrm{n} 2 \mathrm{n} 5=10$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=51.7$
res.rlsource n3 n7 = 23.3
res.rslc1 n5 n51 $=1 \mathrm{e}-6, \mathrm{tc} 1=9.92 \mathrm{e}-4, \mathrm{tc} 2=1.23 \mathrm{e}-6$
res.rslc $2 \mathrm{n} 5 \mathrm{n} 50=1 \mathrm{e} 3$
res.rsource $\mathrm{n} 8 \mathrm{n} 7=4.43 \mathrm{e}-3, \mathrm{tc} 1=0, \mathrm{tc} 2=0$
res.rvtemp n18 n19 $=1$, tc1 $=-1.39 \mathrm{e}-3$, tc2 $=-2.13 \mathrm{e}-7$
res.rvthres n22 n8 $=1$, tc1 $=-2.65 e-3$, tc2 $=-7.94 e-6$
spe.ebreak n11 n7 n17 n18 = 66.25
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $v(n 51, n 50)=\left((v(n 5, n 51) /(1 e-9+a b s(v(n 5, n 51))))^{*}\left((a b s(v(n 5, n 51) * 1 e 6 / 225))^{* *} 3.5\right)\right)$
\}

SPICE Thermal Model

REV 23 June 1999

HUF76439T

CTHERM1 th $63.00 \mathrm{e}-3$
CTHERM2 65 1.90e-2
CTHERM3 54 6.95e-3
CTHERM4 43 7.00e-3
CTHERM5 32 2.95e-2
CTHERM6 2 tl 12.55
RTHERM1 th 6 6.32e-3
RTHERM2 65 1.57e-2
RTHERM3 $544.43 \mathrm{e}-2$
RTHERM4 $432.49 \mathrm{e}-1$
RTHERM5 $323.75 \mathrm{e}-1$
RTHERM6 2 tl $4.98 \mathrm{e}-2$

SABER Thermal ModeI

SABER thermal model HUF76445T
template thermal_model th tl thermal_c th, tl
\{
ctherm.ctherm1 th $6=3.00 \mathrm{e}-3$
ctherm.ctherm2 $65=1.90 \mathrm{e}-2$
ctherm.ctherm3 $54=6.95 \mathrm{e}-3$
ctherm.ctherm4 $43=7.00 \mathrm{e}-3$
ctherm.ctherm5 $32=2.95 \mathrm{e}-2$
ctherm.ctherm6 $2 \mathrm{tl}=12.55$
rtherm.rtherm1 th $6=6.32 \mathrm{e}-3$
rtherm.rtherm2 $65=1.57 \mathrm{e}-2$
rtherm.rtherm3 $54=4.43 \mathrm{e}-2$
rtherm.rtherm4 $43=2.49 \mathrm{e}-1$
rtherm.rtherm5 $32=3.75 \mathrm{e}-1$
rtherm.rtherm6 $2 \mathrm{tl}=4.98 \mathrm{e}-2$
\}

FAIRCHILD

sEMICONDUCTOR*

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TN }}$		Sync-Lock ${ }^{\text {TN }}$
AX-CAP ${ }^{(8)}$	FRFET ${ }^{(8)}$	(3)	SYSTEM ${ }^{\text {® }}$ *
BitSiC ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {sm }}$	PowerTrench ${ }^{(8)}$	EGNER
Build it Now ${ }^{\text {TM }}$	GreenBridge ${ }^{\text {TN }}$	PowerXS ${ }^{\text {™ }}$	${ }^{\text {B }}$
CorePLUS ${ }^{\text {TN }}$	Green FPS ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBuck ${ }^{(8)}$
CorePOWER ${ }^{\text {TN }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinvCalc™
CROSSVOLTTN	$\mathrm{Gmax}^{\text {TN }}$	QS ${ }^{\text {TN }}$	TinyLogic ${ }^{(1)}$
CTL ${ }^{\text {TN }}$	GTO ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TV }}$	TINYOPTOTN
Current Transfer Logic ${ }^{\text {TN }}$	IntelliMAXTN	RapidConfigure ${ }^{\text {TN }}$	TinyPower ${ }^{\text {Tw }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$\mathrm{B}^{T M}$	TinyPWM ${ }^{\text {TN }}$
Dual Cool ${ }^{\text {TN }}$	Marking Small Speakers Sound Louder		TinyWire ${ }^{\text {TM }}$
EcoSPARK ${ }^{(1)}$	and Better ${ }^{\text {TN }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TN }}$	
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TN }}$	SignalWise ${ }^{\text {tN }}$	
ESBC ${ }^{\text {TN }}$	MICROCOUPLER ${ }^{\text {TN }}$	SmartMax ${ }^{\text {TN }}$	$\text { TRUECURRENT }{ }^{\circledR} \text { ® }$
5^{8}	MicroFET ${ }^{\text {TN }}$	SMART START ${ }^{\text {SN }}$ Solutions for Your Success ${ }^{\text {TN }}$	μ SerDes ${ }^{\text {TM }}$
	MicroPak ${ }_{\text {M }}$	Solutions for Your Success ${ }^{\text {SP/ }}$	H
Fairchild ${ }^{(8)}$	MicroPak2 ${ }^{\text {TN }}$	SPM	SerDes
Fairchild Semiconductor ${ }^{\left({ }^{(1)}\right.}$	MillerDrive ${ }^{\text {TN }}$	STEALTH ${ }^{\text {TN }}$	$U H C^{\circledR}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionMax ${ }^{\text {TN }}$	SuperFET ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TN }}$
FACT ${ }^{\text {® }}$	mWSaver ${ }^{\text {a }}$	SuperSOT ${ }^{\text {TM }}$-3	UniFET ${ }^{\text {m }}$
FAST ${ }^{(8)}$	OptoHiT ${ }^{\text {tN }}$	SuperSOT ${ }^{\text {TM }}$-6	VCXTV
FastvCore ${ }^{\text {TN }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	VisualMax ${ }^{\text {™ }}$
FETBench ${ }^{\text {TN }}$	OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {® }}$	VoltagePlus ${ }^{\text {TN }}$
FPS ${ }^{\text {TN }}$		SyncFET ${ }^{\text {TM }}$	VoltagePlus $\text { XS }{ }^{T N}$

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITICNS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www. Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

[^0]: ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and /or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using 0 N Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Yypicals" must be validated for each customer application by customer's technical experts. ON Semic onductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harme ess against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that 0 N Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

