Power Choke Coil for Automotive application

Series: PCC-M0530M (MC) PCC-M0540M (MC) PCC-M0630M (MC) PCC-M0754M (MC) PCC-M0854M (MC) PCC-M0850M (MC) PCC-M1054M (MC) PCC-M1050M (MC) PCC-M1050ML (MC) PCC-M1060ML (MC)

Realize high heat resistance and high reliability with metal composite core(MC)
Industrial Property : patents 21 (Registered 2/Pending 19)

Features

- High heat resistance
- High-reliability
- High bias current
- Temp. stability
- Low buzz noise
- High efficiency
- AEC-Q200 qualified
- RoHS compliant

Operation up to $150^{\circ} \mathrm{C}$
High vibration resistance due to newly developed integral construction and severe reliability condition of automotive application is covered
Excellent inductance stability by using ferrous alloy magnetic material(Fig.1)
Excellent inductance stability in wide temp. range (Fig.1)
New metal composite core technology
Low Roc of winding and low eddy-current loss of the core

- Fig. 1 Inductance v.s. DC current, Temp.

ETQP5M470YFM(reference)

Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- DC/DC converters

Standard Packing Quantity (Minimum Quantity/Packing Unit)

- 1,000 pcs./box (2 reel) : PCC-M0645M, M0754M, M0854M, M0850M, M1054M, M1050M, M1050ML, M1060ML
2,000 pcs./box (2 reel) : PCC-M0530M, M0540M, M0630M

Explanation of Part Numbers

Temperature rating

Operating temperature range		Tc : $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (Including self-temperature rise)
Storage condition	After PWB mounting	
	Before PWB mounting	$\mathrm{Ta}:-5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} 85 \% \mathrm{RH}$ max.

1. Series PCC-M0530M/PCC-M0540M (ETQP3M $\square \square \square Y F P / E T Q P 4 M \square \square \square Y F P) ~$

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $\left.20{ }^{\circ} \mathrm{C}\right)(\mathrm{m} \Omega)$		Rated Current (Typ. : A)		
		LO	Tolerance	$\begin{gathered} \text { Typ. } \\ \text { (max.) } \end{gathered}$	Tolerance (\%)			$\triangle \mathrm{L}=-30 \%$
		($\mu \mathrm{H}$)	(\%)			(*2)	(*3)	(*4)
PCC-M0530M	ETQP3M2R2YFP	2.2	± 20	22.6 (24.8)	± 10	4.8	5.8	10.9
[$5.5 \times 5.0 \times 3.0(\mathrm{~mm}$)]	ETQP3M3R3YFP	3.3		31.3 (34.4)		4.1	5.0	8.6
PCC-M0540M	ETQP4M4R7YFP	4.7		36.0 (39.6)		4.0	4.8	7.7
[$5.5 \times 5.0 \times 4.0(\mathrm{~mm}$)]	ETQP4M220YFP	22		163 (179)		1.9	2.3	3.1

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. $52 \mathrm{~K} / \mathrm{W}$ measured on $5.5 \times 5.0 \times 3.0 \mathrm{~mm}$ case size and approx. $48 \mathrm{~K} / \mathrm{W}$ measured on $5.5 \times 5.0 \times 4.0 \mathrm{~mm}$ case size. See also ($* 5$)
(*4) Saturation rated current: DC current which causes $\mathrm{L}(0)$ drop -30%.
$(* 5)$ Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150^{\circ} \mathrm{C}$ should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)
PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

2. Series PCC-M0630M/PCC-M0645M (ETQP3M $\square \square \square Y F N / E T Q P 4 M \square \square \square Y F N) ~$

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $\left.20{ }^{\circ} \mathrm{C}\right)(\mathrm{m} \Omega)$		Rated Current (Typ. : A)		
		$\begin{gathered} \mathrm{LO} \\ (\mu \mathrm{H}) \end{gathered}$	Tolerance (\%)	$\begin{aligned} & \text { Typ. } \\ & \text { (max.) } \end{aligned}$	Tolerance (\%)	$\triangle T=40 \mathrm{~K}$		$\triangle L=-30 \%$
						(*2)	(*3)	(*4)
PCC-M0630M	ETQP3MR68YFN	0.68	± 20	6.3 (6.9)	± 10	9.8	12.0	24.0
[6.5×6.0×3.0(mm)]	ETQP3M1R0YFN	1.0		7.9 (8.7)		8.8	10.7	20.0
$\begin{gathered} \text { PCC-M0645M } \\ {[6.5 \times 6.0 \times 4.5(\mathrm{~mm})]} \end{gathered}$	ETQP4M6R8YFN	6.8		39.3 (43.2)		4.1	5.2	10.0
	ETQP4M100YFN	10		54.2 (59.6)		3.3	4.5	8.3
	ETQP4M470YFN	47		210 (231)		1.8	2.2	3.8

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
$(* 3)$ DC current which causes temperature rise of 40 K . Partsare soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. $44 \mathrm{~K} / \mathrm{W}$ measured on $6.5 \times 6.0 \times 3.0 \mathrm{~mm}$ case size and approx. $37 \mathrm{~K} / \mathrm{W}$ measured on $6.5 \times 6.0 \times 4.5 \mathrm{~mm}$ case size. See also $(* 5)$
(*4) Saturation rated current: DC current which causes L(0) drop -30 \%.
$(* 5)$ Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150^{\circ} \mathrm{C}$ should not be exceeded.
For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

ETQP4M6R8YFN

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

3. Series PCC-M0754M (ETQP5M $\square \square \square$ YFM)

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $\left.20^{\circ} \mathrm{C}\right)(\mathrm{m} \Omega)$		Rated Current (Typ. : A)		
		$\begin{gathered} \mathrm{LO} \\ (\mu \mathrm{H}) \end{gathered}$	Tolerance (\%)	$\begin{gathered} \text { Typ. } \\ \text { (max.) } \end{gathered}$	Tolerance (\%)	$\triangle \mathrm{T}=40 \mathrm{~K}$		$\triangle L=-30 \%$
						(*2)	(*3)	(*4)
$\begin{gathered} \text { PCC-M0754M } \\ {[7.5 \times 7.0 \times 5.4(\mathrm{~mm})]} \end{gathered}$	ETQP5M4R7YFM	4.7	± 20	20(23)	± 10	6.3	8.0	13.1
	ETQP5M100YFM	10		37.6(41.3)		4.7	5.7	10.6
	ETQP5M220YFM	22		92(102)		3.0	3.7	5.8
	ETQP5M330YFM	33		120(132)		2.6	3.3	4.8
	ETQP5M470YFM	48		156(172)		2.3	2.9	4.1

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also $(* 5)$
$(* 3)$ DC current which causes temperature rise of 40 K . Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant is approx. $31 \mathrm{~K} / \mathrm{W}$ measured on $7.5 \times 7.0 \times 5.4 \mathrm{~mm}$ case size. See also (*5)
$(* 4)$ Saturation rated current: DC current which causes L(0) drop -30%.
$(* 5)$ Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150{ }^{\circ} \mathrm{C}$ should not be exceeded.
For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)
PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

ETQP5M330YFM

ETQP5M470YFM

4. Series PCC-M0854M/PCC-M0850M (ETQP5M $\square \square \square Y F K / E T Q P 5 M \square \square \square Y G K) ~$

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $\left.20^{\circ} \mathrm{C}\right)(\mathrm{m} \Omega)$		Rated Current (Typ. : A)		
		$\begin{gathered} \mathrm{LO} \\ (\mu \mathrm{H}) \end{gathered}$	Tolerance (\%)	Typ. (max.)	Tolerance (\%)	$\triangle \mathrm{T}=40 \mathrm{~K}$		$\triangle L=-30 \%$
						(*2)	(*3)	(*4)
$\begin{gathered} \text { PCC-M0854M } \\ {[8.5 \times 8.0 \times 5.4(\mathrm{~mm})]} \end{gathered}$	ETQP5M2R5YFK	2.5	± 20	7.6(8.4)	± 10	11.9	14.0	20.1
	ETQP5M100YFK	10		33(37)		5.7	6.7	13.0
	ETQP5M220YFK	22		63(70)		4.1	4.8	6.9
	ETQP5M470YFK	48		125(138)		2.9	3.4	5.4
$\begin{gathered} \text { PCC-M0850M } \\ {[8.5 \times 8.0 \times 5.0(\mathrm{~mm})]} \\ \hline \end{gathered}$	ETQP5M101YGK	100		302(333)		1.7	2.1	3.0

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also $(* 5)$
$(* 3)$ DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 27 KW measured on $8.5 \times 8.0 \times 5.4 \mathrm{~mm}$ case size and approx. 29 KW measured on $8.5 \times 8.0 \times 5.0 \mathrm{~mm}$ case size. See also (*5)
$(* 4)$ Saturation rated current: DC current which causes $\mathrm{L}(0)$ drop -30%.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150^{\circ} \mathrm{C}$ should not be exceeded.
For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

ETQP5M470YFK

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)
PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

ETQP5M101YGK

5. Series PCC-M1054M/PCC-M1050M (ETQP5M $\square \square \square$ YFC/ETQP5M $\square \square \square \mathrm{YGC})$

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $20^{\circ} \mathrm{C}$) (m)		Rated Current (Typ. : A)		
		$\begin{gathered} \mathrm{LO} \\ (\mu \mathrm{H}) \end{gathered}$	Tolerance (\%)	$\begin{gathered} \text { Typ. } \\ \text { (max.) } \end{gathered}$	Tolerance (\%)	$\triangle \mathrm{T}=40 \mathrm{~K}$		$\triangle \mathrm{L}=-30 \%$
						(*2)	(*3)	(*4)
$\begin{gathered} \text { PCC-M1054M } \\ {[10.7 \times 10.0 \times 5.4(\mathrm{~mm})]} \end{gathered}$	ETQP5M1R5YFC	1.45	± 20	3.8(4.2)	± 10	17.9	21.4	35.1
	ETQP5M2R5YFC	2.5		5.3(5.9)		15.1	18.1	27.2
	ETQP5M3R3YFC	3.3		7.1(7.9)		13.1	15.7	22.7
	ETQP5M4R7YFC	4.7		10.2(11.3)		10.9	13.1	20.0
	ETQP5M100YFC	10		23.8(26.2)		7.1	8.5	10.7
	ETQP5M220YFC	22		45(50)		5.2	6.2	8.8
	ETQP5M330YFC	32.5		68.5(75.4)		4.2	5.0	7.6
$\begin{gathered} \text { PCC-M1050M } \\ {[10.7 \times 10.0 \times 5.0(\mathrm{~mm})]} \\ \hline \end{gathered}$	ETQP5M101YGC	97		208(229)		2.2	2.7	3.0

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also $(* 5)$
$(* 3)$ DC current which causes temperature rise of 40 K . Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. $23 \mathrm{~K} / \mathrm{W}$ measured on $10.7 \times 10.0 \times 5.4 \mathrm{~mm}$ case size and approx. $26 \mathrm{~K} / \mathrm{W}$ measured on $10.7 \times 10.0 \times 5.0 \mathrm{~mm}$ case size. See also (*5)
(*4) Saturation rated current : Dc current which causes L(0) drop -30 \%.
$(* 5)$ Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150^{\circ} \mathrm{C}$ should not be exceeded.
For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

ETQP5M4R7YFC

ETQP5M330YFC

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)
PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

ETQP5M100YFC

ETQP5M101YGC

6. Series PCC-M1050ML/PCC-M1060ML (ETQP5M $\square \square \square Y L C / E T Q P 6 M \square \square \square Y L C)$

Standard Parts								
Series	Part No.	Inductance *1		DCR (at $20^{\circ} \mathrm{C}$) (m Ω)		Rated Current (Typ. : A)		
		$\begin{gathered} \text { LO } \\ (\mu \mathrm{H}) \end{gathered}$	Tolerance (\%)	$\begin{gathered} \text { Typ. } \\ (\max .) \end{gathered}$	Tolerance (\%)	$\triangle \mathrm{T}=40 \mathrm{~K}$		$\triangle L=-30 \%$
						(*2)	(*3)	(*4)
$\begin{gathered} \text { PCC-M1050ML } \\ {[10.9 \times 10.0 \times 5.0(\mathrm{~mm})]} \end{gathered}$	ETQP5MR68YLC	0.68	± 20	1.75(1.93)	± 10	26.3	31.5	42.0
	ETQP5M1R0YLC	1.0		2.3(2.53)		23.0	27.5	38
PCC-M1060ML	ETQP6M2R5YLC	2.5		4.5(5.0)		16.3	19.6	27.0
[10.9 $\times 10.0 \times 6.0(\mathrm{~mm}$)]	ETQP6M3R3YLC	3.3		6.0(6.6)		14.2	17.0	26.0

(*1) Measured at 100 kHz .
(*2) DC current which causes temperature rise of 40 K . Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
$(* 3)$ DC current which causes temperature rise of 40 K . Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 KN measured on $10.9 \times 10.0 \times 5.0 \mathrm{~mm}$ case size and approx. $23 \mathrm{~K} / \mathrm{W}$ measured on $10.9 \times 10.0 \times 6.0 \mathrm{~mm}$ case size. See also (*5)
(*4) Saturation rated current : Dc current which causes L(0) drop -30 \%.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
In normal case, the max.standard operating temperature of $+150^{\circ} \mathrm{C}$ should not be exceeded.
For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

- Inductance vs DC Current

- Case Temperature vs DC Current

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)
PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

ETQP6M2R5YLC

Dimensions in mm (not to scale)

Dimensional tolerance unless noted : ± 0.5

Series PCC-M0530M
Series PCC-M0540M
(ETQP3M $\square \square \square Y F P / E T Q P 4 M \square \square \square Y F P)$

Series PCC-M0754M
(ETQP5MD $\square \square$ YFM)

Series PCC-M1054M
Series PCC-M1050M (ETQP5MDดपYFC/YGC)

Series PCC-M0630M
Series PCC-M0645M
(ETQP3M $\square \square \square Y F N / E T Q P 4 M \square \square \square Y F N)$

Series	H
M0630M	3.0 max.
M0645M	4.5 max.

Series PCC-M0854M
Series PCC-M0850M
(ETQP5M $\square \square$ YFK/YGK)

Series PCC-M1050ML
Series PCC-M1060ML
(ETQP5M $\square \square \square Y L C / E T Q P 6 M \square \square \square Y L C)$

Recommended Land Pattern in mm（not to scale）

Dimensional tolerance unless noted ：± 0.5

Series PCC－M0530M
Series PCC－M0540M
（ETQP3M $\square \square \square \mathrm{YFP} / E T Q P 4 M \square \square \square \mathrm{YFP})$

Series PCC－M0630M
Series PCC－M0645M
（ETQP3MロロロYFN／ETQP4MロロロYFN）

Series PCC－M0754M
（ETQP5MロロロYFM）

Don＇t wire on the pattern on shaded portion the PWB．

Series PCC－M0854M Series PCC－M0850M （ETQP5MロロロYFK／YGK）

The same as the left．

The same as the left．

Series PCC－M1054M Series PCC－M1050M （ETQP5M $\square \square \square \mathrm{YFC} / \mathrm{YGC})$

Series PCC－M1050ML Series PCC－M1060ML （ETQP5M $\square \square \square Y L C / E T Q P 6 M \square \square \square Y L C)$
 on shaded portion the PWB．

The same as the left．

The same as the left．
－As for Packaging Methods，Soldering Conditions and Safety Precautions （Power Choke Coils for Automotive application），
Please see Data Files

