ECN2102 / 2112 is a single chip row driver IC for electroluminescent (EL) display panel.

Functions

- Low-voltage serial to high-voltage parallel converter
- * 34 outputs of totem pole type

Features

- * Output terminal voltage up to 250V
- * Source / Sink current 500mA

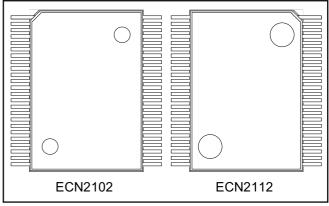
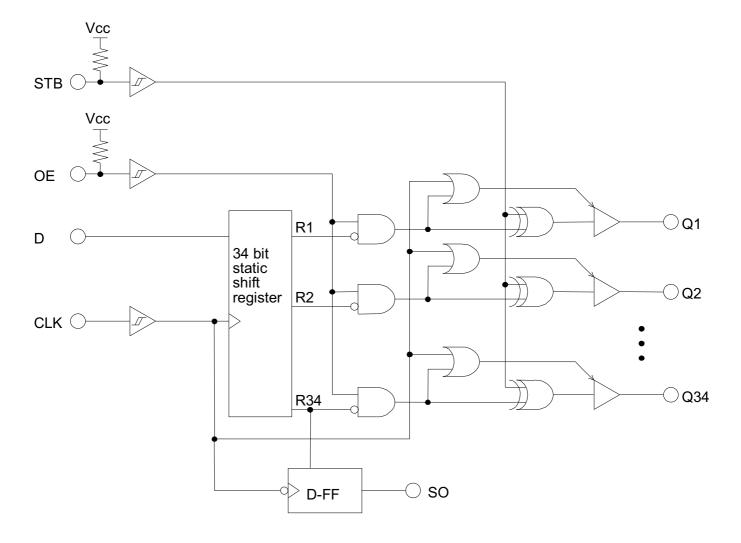



Fig. 1. OUTLINE OF FP-48 PACKAGE

Function Block Diagram (Positive Logic)

1. GENERAL

(1) TYPE ECN2102/ECN2112

(2) APPLICATION Row line driver for Electroluminecent (EL) display panel

(3) STRUCTURE Monolithic IC, processed Dielectric Isolation.

(4) PACKAGE FP-48 (Fig.1)

2. MAXIMUM ALLOWABLE RATING (Ta=25°C)

No	ITEMS	SYMBOLS	YMBOLS RATINGS		CONDITIONS	
1	Supply Voltage (logic)	Vcc	-0.5 ~ +7.0	V	to GND terminal	
2	Input Voltage (logic)	Vin	-0.5 ~ Vcc+0.5	V	to GND terminal	
3	Vs - GND Voltage	Vsg	Vcc	V	to GND terminal	
4	Output Terminal Voltage	VQ	±250	V	Between Vs,Vcc,GND,	
					Input and Q output	
5	Allowable Power Dissipation	Рт	800	mW		
6	Operating Temperature	Тор	-40 ~ +85	°C		
7	Storage Temperature	Tstg	-55 ~ +150	°C		

3. RECOMMENDED OPERATING CONDITIONS

No	ITEMS	SYMBOLS	Min.	Тур.	Max.	UNITS	CONDITIONS
1	Supply Voltage (logic)	Vcc	5.0	5.5	6.0	V	
2	Clock Frequency	fclk	ı	_	250	kHz	Vcc= 5.5V
3	Clock Pulse Width	twclk	80	_		ns	Vin= 0V/5.5V
4	Data Setup Time	tsu	80	_	_	ns	
5	Data Hold Time	th	80	_	_	ns	
6	Output Terminal Voltage	VQ	_	±230	_	V	Vcc= 5.5V
7	Peak Output Source Current	Нюн	_	_	-500	mA	Note 1
8	Peak Output Sink Current	HIOL	_	_	+500	mA	Note 1

Note1 : Conduction period \leq 5 μs per 1 IC

4. ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Ta= 25°C, Vcc= 5.5V, HVCC=230V)

No	ITEMS	SYMBOLS	Min.	Тур.	Max.	UNITS	CONDITIONS	
1	Output Voltage (logic)	Vol	1	_	0.1	V	IoL= 20μA	
		Voн	5.4	_	_	V	Іон=-20μΑ	
2	Output Current (logic)	lol	1.0	_	_	mA	VoL= 0.8V	
		Юн	-1.0	_	_	mA	Volh 4.7V	
3	Input Voltage (logic)	VIL	-	_	1.0	V	D input	
		ViH	3.5	_	_	V		
		VTHL	_	_	0.4	V	CLK,STB input	
		VTLH	4.5	_	_	V		
4	Input Current (logic)	lін	_	_	10	μА	Vin=5.5V all inpu	t/1 input
		IIL	_	_	-10	μА	Vin=0V D,CLK/1 input	
			_	_	-100	μА	Vin=0V STB/1 input	
5	Dissipation Current(logic)	Istb	_	_	10	μΑ	No signal all input 5.5V,	
							all output Off	
			_	_	25	mA	No signal, 1ch source output On	
			_	_	5	mA	No signal, 1ch sink output On	
6	Output Voltage	HVOL	_	_	3.0	V	HIOL=1mA	Q out-GND
			_	_	6.0	V	HIOL=200mA	Q out-GND
		Нуон	_	_	4.0	V	Нюн=-1mA	Vs-Q out
			_	_	8.0	V	Нюн=-200mA	Vs-Q out
7	Output SCR dv/dt capability	dv/dt1	200	_	_	V/μs	Vs~Q out,+dv/dt apply.Fig.6	
		dv/dt2	200	-	_	V/μs	Q out~GND,-dv/dt apply.Fig.7	
8	Output SCR Off Period	toff	_	_	6.0	μS	Source side	Fig.8
			_	_	7.0	μS	Sink side	

5. SWITCHING CHARACTERISTICS (Unless otherwise specified, Ta= 25°C, Vcc= 5.5V, Fig.5)

No	ITEMS	SYMBOLS	Min.	Тур.	Max.	UNITS	CONDITIONS
1	Output Delay Time (logic)	tPLH	ı	-	300	ns	CL=15pF
		tPHL	_	_	300	ns	
2	Output Delay Time	tQLH	_	_	3	μS	RLQ=1kΩ
		tQHL	_	_	3	μS	CLQ=2000pF

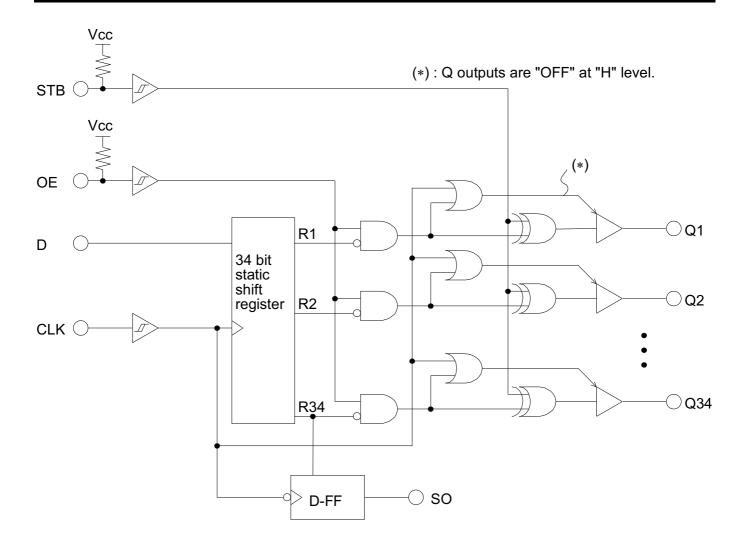


Fig. 2. Function Block Diagram (Positive Logic)

6. FUNCTION TABLE

		CONTRO	OL INPUT	-	SHIFT REGISTER	OUTF	PUT	
	CLK	D	OE(*4) STB		Rn	SO(*1)	Q	
SHIFT		*	Н	*	shift			
OPERATION	no↑	*	Н	*	keep			
				Н	Н		H (*2)	
OUTPUT	L	*	Н		L	R34	OFF	
OPERATION				L	Н		L (*3)	
					L		OFF	
	Н	*	H *		*		ALL OFF	

- (*1) 34th data is pushed out as output at the state of down edge ↓ of clock signal.
- (*2) When shift register is "H", source SCR of Q output is driven to ON.
- (*3) When shift register is "H", sink SCR of Q output is driven to ON.
- (*4) OE must be kept "H".

7. INPUT / OUTPUT CIRCUIT

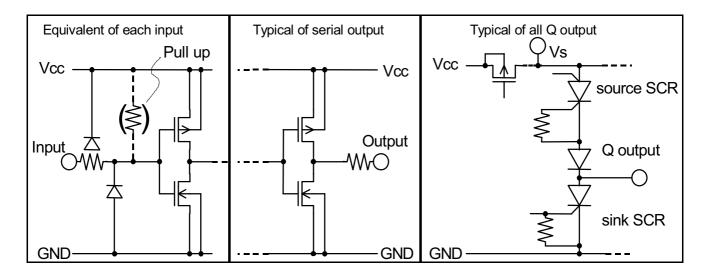


Fig. 3. Input / Output Circuit

8. EXAMPLE OF OPERATING TIMING CHART

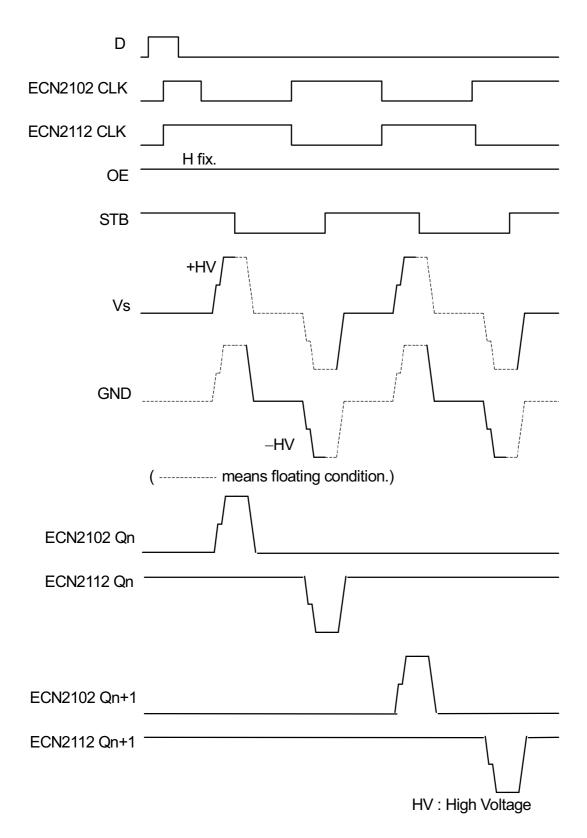
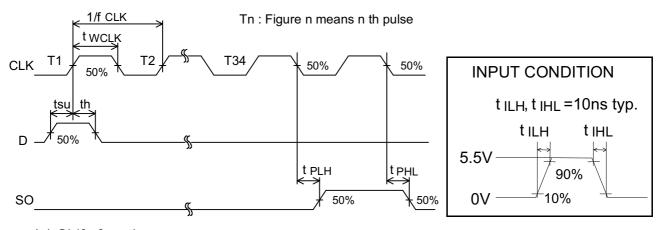
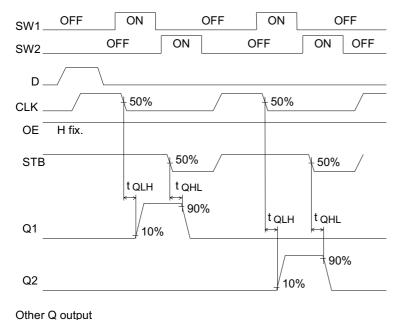




Fig. 4. Example of Operating Timing Chart

9. MEASUREMENT AND MEASUREMENT CIRCUIT

(a) Shift function (SW1→OFF, SW2,3→ON)

(b) Output Function (SW3→OFF)

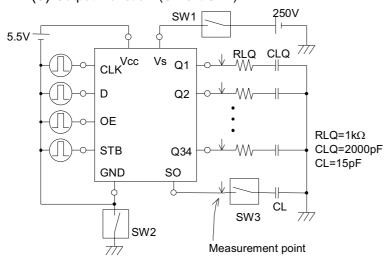


Fig. 5. Switching Characteristics Measurement Circuit

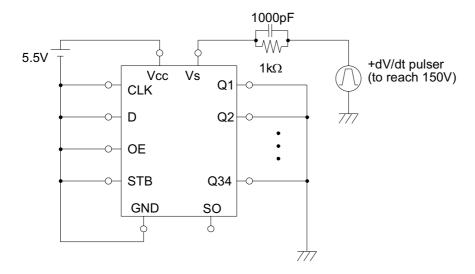


Fig. 6. Output SCR dV/dt capability (dV/dt1) Measurement Circuit

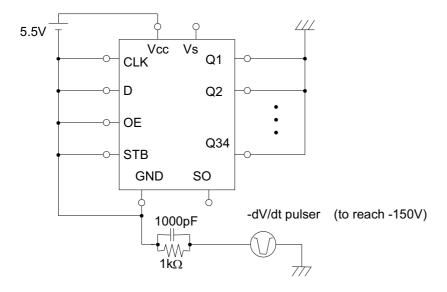
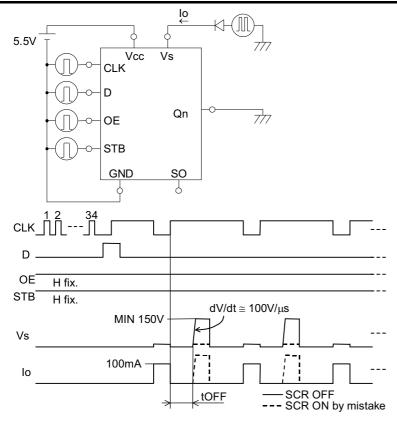



Fig. 7. Output SCR dV/dt capability (dV/dt2) Measurement Circuit

(a) Source SCR

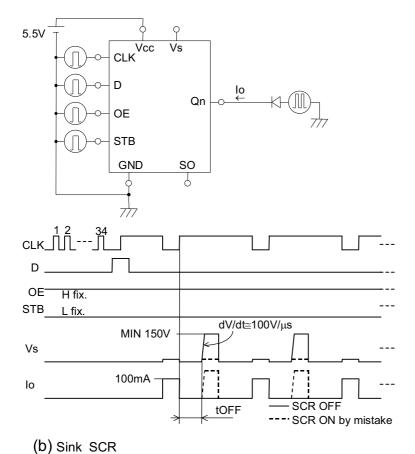
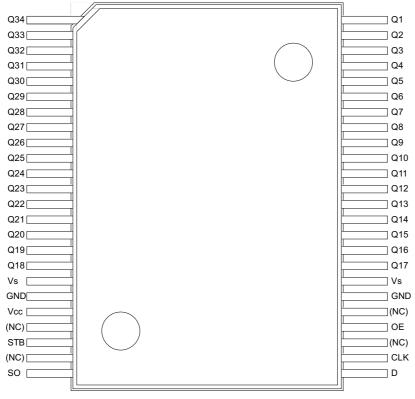
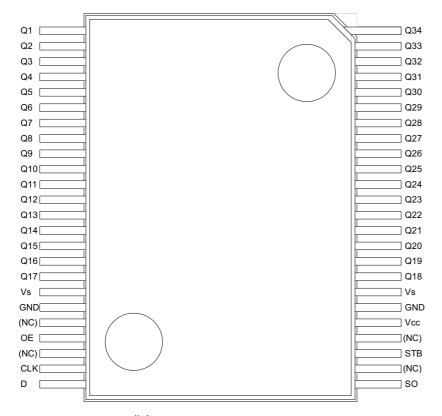
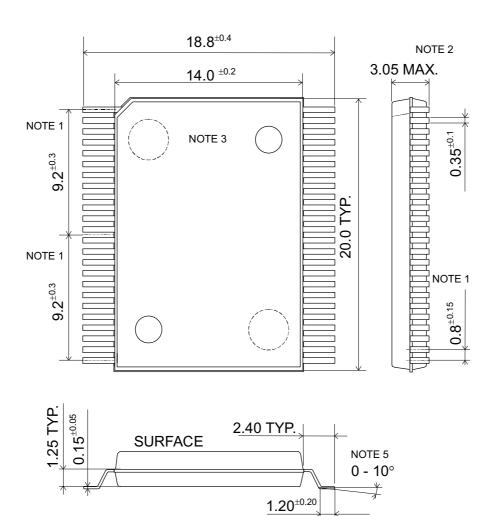




Fig. 8. Output SCR tOFF Measurement

10. PIN LOCATION

(a) ECN2102

(b) ECN2112

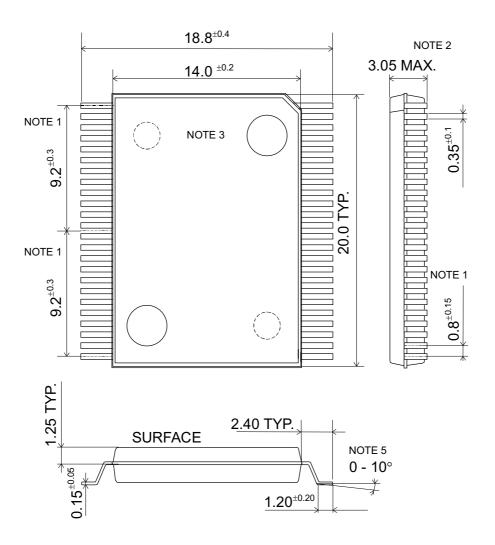

Fig. 9. Pin Location (Top view)

(Unit: mm)

ECN2102/2112

11. PACKAGE OUTLINE

(1) ECN2102


Notes.

- 1. THIS DIMENSION IS MEASURED AT ROOT OF LEAD. SPACING AT TIP OF LEAD IS MIN 0.2.
- 2. THIS DIMENSION INCLUDES A WARPAGE OF PACKAGE.
- 3. MARKING IS ON THE SURFACE OF PACKAGE, INCLUDING HITACHI MARK, TYPE NAME, LOT NUMBER, AND JAPAN MARK.
- 4. LEADS ARE SOLDER PLATED.
- 5. THIS IS THE BENDING ANGLE WITH HORIZONTAL PLANE.

Fig. 10. Package outline (ECN2102)

(Unit: mm)

(2) ECN2112

Notes.

- 1. THIS DIMENSION IS MEASURED AT ROOT OF LEAD. SPACING AT TIP OF LEAD IS MIN 0.2.
- 2. THIS DIMENSION INCLUDES A WARPAGE OF PACKAGE.
- 3. MARKING IS ON THE SURFACE OF PACKAGE, INCLUDING HITACHI MARK, TYPE NAME, LOT NUMBER, AND JAPAN MARK.
- 4. LEADS ARE SOLDER PLATED.
- 5. THIS IS THE BENDING ANGLE WITH HORIZONTAL PLANE.

Fig. 11. Package outline (ECN2112)

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are adviced to contact Hitachi sales department for the latest version of this data sheets.
- 2.Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use
- 3.In cases where extremely high reliability is required(such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4.In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets
- 5.In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6.No license is granted by this data sheets under any patents or other rights of any third party or Hitachi, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi.co.jp/pse