FEATURES

- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully isolated
- Magnetic feedback
- · Fixed frequency 600 kHz typical
- Topology Single Ended Forward
- 50 V for up to 50 ms transient protection
- · Inhibit and synchronization functions
- · Indefinite short circuit protection
- . Up to 30 watts output power
- Trim and remote sense on single output models
- Up to 84% efficiency

MODELS								
VDC OUTPUT								
SINGLE	DUAL	TRIPLE						
3.3	±5	+5 &						
5	±12	±12						
12	±15	+5 &						
15		±15						
18								

MTR SERIES

30 WATT

Size (max): Non-flanged: Single and dual output models, case H2 (H4 for MTR Dual with standard or ES screening, ht 0.417", 10.59 mm)

2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm)

Triple output models, case F1, 1.950 x 1.350 x 0.405 inches (49.53 x 34.29 x 10.29 mm)

Flanged: Single and dual output models, case K3 (or K5 for MTR Dual with standard or ES screening, ht. 0.417", 10.59 mm)

2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm)

Triple output models, case J1, 2.720 x 1.350 x 0.405 inches (69.09 x 34.29 x 10.29 mm)

Weight: Single and dual non-flanged 50 grams max., flanged 52 grams max.

Triple non-flanged 58 grams max., flanged 62 grams max.

Screening: Standard, ES, or 883 (Class H).

DESCRIPTION

The MTR Series™ of DC/DC converters offers up to 30 watts of output power from single, dual, or triple output configurations. They operate over the full military temperature range with up to 84% efficiency. MTR converters are packaged in hermetically sealed metal cases, making them ideal for use in military, aerospace and other high reliability applications.

CONVERTER DESIGN

The MTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense. On dual output models, the positive output is independently regulated and the negative output is cross regulated through the use of tightly coupled magnetics and shunt regulators. The MTR Series triple output DC/DC converter's design includes individual regulators on the auxiliary outputs which provide for no cross regulation error when a minimum 500 mA load is maintained on the main (+5) output.

Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

MTR converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. For systems that require compliance with MIL-STD-461C's CE03 standard, Interpoint offers filter/transient suppression modules (including the FMC-461, FMD-461 and FM-704A series filters) which will result in compliance. Contact your Interpoint representative for further details.

SYNCHRONIZATION

Synchronizing the converter with the system clock allows the designer to confine switching noise to clock transitions, minimizing interference and reducing the need for filtering. In sync mode, the converter will run at any frequency between 500 kHz and 675 kHz. The sync control operates with a quasi-TTL signal at any duty cycle between 40% and 60%. The sync pin must be connected to input common pin when not in use.

WIDE VOLTAGE RANGE

MTR converters are designed to provide full power operation over a full 16 to 40 VDC voltage range. Operation below 16 volts, including MIL-STD-704E emergency power conditions is possible with derated power. Refer to the low line dropout graph (Figure 22) for details.

IMPROVED DYNAMIC RESPONSE

The MTR Series feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. The minimum to maximum step line transient response is typically less than 4%.

INHIBIT FUNCTION

MTR converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when a TTL compatible low (\leq 0.8 V) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate. The open circuit output voltage associated with the inhibit pin is 9 to 11 V. In the inhibit mode, a maximum of 8 mA must be sunk from the inhibit pin.

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

• 16 to 40 VDC

Output Power

• 25 to 30 watts depending on model

Lead Soldering Temperature (10 sec per pin)

• 300°C

Storage Temperature Range (Case)

• -65°C to +135°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 40 VDC continuous
- 50 V for 50 msec transient

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- −55°C to +135°C absolute

Derating Output Power/Current

Linearly from 100% at 125°C to 0% at 135°C

SYNC AND INHIBIT

Sync (500 to 675 kHz)

- Duty cycle 40% min, 60% max
- · Logic low 0.8 V max
- · Logic high 4.5 V min, 5 V max
- Referenced to input common
- · If not used, connect to input common

Inhibit TTL Open Collector

- · Logic low (output disabled) Voltage ≤0.8 V
- Inhibit pin current 8.0 mA max · Referenced to input common
- Logic high (output enabled) Open collector

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

- 100 ppm/°C typical single and dual outputs
- 200 ppm/°C main, 300 ppm/°C aux triple output

Input to Output Capacitance

• 50 pF typ (100 pF typ triple outputs)

Current Limit

. 115% of full load typical

Isolation

• 100 megohm minimum at 500 V

Audio Rejection

• 40 dB typ (50 dB typ triple output)l

Conversion Frequency

• Free run 550 min, 600 typ, 650 max kHz

External sync 500 to 675 kHz

Inhibit Pin Voltage (unit enabled)

• 9 to 11 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS		MTR283R3S		MTR2805S		MTR2812S		MTR2815S		5S	MTR2818S						
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.27	3.30	3.33	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	17.82	18.00	18.18	VDC
OUTPUT CURRENT ¹	V _{IN} = 16 to 40 VDC	0	_	6.06	0	_	5.0	0	_	2.5	0	_	2.0	0	_	1.67	Α
OUTPUT POWER ¹	V _{IN} = 16 to 40 VDC	0	_	20	0	_	25	0	_	30	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz – 2 MHz	_	15	40	_	35	50	_	25	50	_	25	50	_	_	40	.,
VOLTAGE	Tc = -55°C TO +125°C	_	_	50	—	50	90	<u>-</u>	40	90	_	40	90	_	_	90	mV p-p
LINE REGULATION ²	Vin = 16 to 40 VDC	_	5	10	_	10	30	_	10	30	_	10	30	_	_	30	
	Tc = -55°C TO +125°C	_	_	10	_	15	50	_	15	50	_	15	50	_	_	50	mV
LOAD REGULATION	NO LOAD TO FULL	_	2	10	_	5	30	_	5	30	_	5	30	_	_	30	\/
	Tc = -55°C TO +125°C	_	_	10	-	15	50	_	15	50	_	15	50	_	_	50	mV
INPUT VOLTAGE ¹	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	_	_	50	_	_	50	_	_	50	_	_	50	_	_	50	V
INPUT CURRENT ¹	NO LOAD	_	30	75	_	35	75	_	35	75	_	35	75	_	_	50	mA
	FULL LOAD	_	0.94	_	_	1.15	_	_	1.30	_	_	1.25	_	_	1.33	_	Α
	INHIBITED	_	7	8	_	3	8	_	3	8	_	3	8	_	_	8	mA
INPUT RIPPLE	10 kHz – 10 MHz																
CURRENT	Tc = -55°C TO +125°C	_	25	50	—	20	50	—	20	50	—	20	50	_	_	50	mA p-p
EFFICIENCY		74	76	_	76	78	_	80	83	_	81	84	_	81	_	_	%
LOAD FAULT ³	SHORT CIRCUIT																
	POWER DISSIPATION	_	_	10	_	_	10	—	_	10	_	_	10	_	_	10	W
	RECOVERY ^{1, 4}	_	1.4	6	—	1.4	5	-	1.4	5	_	1.4	5	_	1.4	_	ms
STEP LOAD RESP.	50% - 100% - 50%																
	TRANSIENT	_	±125	±250	_	±200	±300	—	±250	±400	_	±350	±500	_	_	±600	mV pk
	RECOVERY ⁴	_	_	200	_	60	200	_	60	200	_	60	200	_	60	_	μs
STEP LINE RESP.	16 - 40 - 16 VDC																
	TRANSIENT ⁵	_	_	±300	_	±200	±300	—	±400	±500	_	±500	±600	_	±500	_	mV pk
	RECOVERY ⁴	_	_	300	-	_	300	_	_	300	_	_	300	_	300	_	μs
START-UP ¹	DELAY	_	1.4	5	_	1.4	5	—	1.4	5	_	1.4	5	_	_	5	ms
	OVERSHOOT																
	FULL LOAD	—	0	50	—	0	50	—	0	120	—	0	150	_	0	_	ma\/ m/s
	NO LOAD	_	33	150	-	50	250	_	120	600	_	150	750	_	_	_	mV pk

Notes

- 1. $Tc = -55^{\circ}C$ to $+125^{\circ}C$
- 2. Operation is limited below 16V (see Figure 22).
- 3. Indefinite short circuit protection not guaranteed above 125°C case.
- 4. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 5. Transition time ≥10 µs.

MTR SERIES 30 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

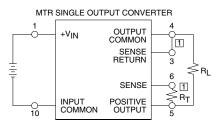
DUAL OUTPUT MODELS			M	TR2805[)	M	TR2812			TR2815I)	
PARAMETER	CONDITIO		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
OUTPUT VOLTAGE		+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
		-V _{OUT}	4.92	5.00	5.07	11.82	12.00	12.18	14.77	15.00	15.23	VDC
OUTPUT CURRENT ^{1, 2}	V _{IN} = 16 TO 4		0	2.5	4.5	0	1.25	2.25	0	1.0	1.8	Α
OUTPUT POWER ^{1, 2}	V _{IN} = 16 TO 4	0 VDC	0	_	25	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz - 2 N	10 kHz - 2 MHz		20	50	_	30	80	_	25	80	.,
VOLTAGE +/- V _{OUT}	Tc = -55°C TO	+125°C	_	40	80	_	40	120	_	40	120	mV p
LINE REGULATION ³		+V _{OUT}	_	10	50	_	10	30	_	10	30	
V _{IN} = 16 TO 40 VDC		-V _{OUT}	_	50	100	_	50	120	_	50	150	
	Tc = -55°C	+V _{OUT}	_	10	50	_	10	50	_	10	50	m\
	TO +125°C	-V _{OUT}	_	50	100	_	50	150	_	50	180	
LOAD REGULATION		+V _{OUT}	_	5	30	_	15	30	_	15	30	
NO LOAD TO FULL		-V _{OUT}	_	25	50	_	30	120	_	30	150	mV
	Tc = -55°C	+V _{OUT}		5	50	_	15	50	_	15	50	
	TO +125°C	-V _{OUT}	_	25	100	_	30	180	_	30	180	
CROSS REGULATION	SEE NOTE 4		_	7	12	_	4	8.3	_	3	8	
EFFECT ON -V _{OUT}	SEE NOTE 5		_	4	6	_	4	6	_	4	6	%
INPUT VOLTAGE ¹	CONTINUOUS		16	28	40	16	28	40	16	28	40	VD
NO LOAD TO FULL	TRANSIENT	50 ms	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD		_	35	75	_	50	75	_	50	75	m
	FULL LOAD		_	1.10	_	_	1.34	_	_	1.29	_	Α
	INHIBITE	D	_	3	8	_	3	8	_	3	8	m/
INPUT RIPPLE												
CURRENT ¹	10 kHz - 10	MHz		15	50	_	20	50		20	50	mA
EFFICIENCY			76	78		78	81		80	83		%
LOAD FAULT ⁶	POWER DISSII											
	SHORT CIRC				10	_		10	_		10	V
07501040	RECOVER			1.4	5.0	_	1.4	5.0	_	1.4	5.0	m
STEP LOAD	50 – 100 – 50% I	-					450	.000			400	
RESPONSE ± V _{OUT}	TRANSIE		_	±200	±300		±150	±300		±200	±400	mV
	RECOVER			100	200		100	200		100	200	με
STEP LINE	16 – 40 – 16											
RESPONSE ± V _{OUT}	TRANSIEN		_	±200	±400	_	±200	±400	_	±400	±500	mV
	RECOVER	1Y ⁷	_		300			300	_		300	με
START-UP ¹	DELAY		_	1.4	5		1.4	5	_	1.4	5	m
	OVERSHO	ОТ										
	FULL LOA	ND	_	0	50	_	0	120	_	0	150	
	NO LOAI		_	50	250	_	120	600	_	150	750	mV

- 1. Tc = -55° C to $+125^{\circ}$ C.
- 2. Up to 90% of the total output current/power is available from either output providing the positive output is carrying at least 10% of the total output
- 3. Operation is limited below 16 V (see Figure 22).
- 4. Effect on the negative output under the following conditions: +P_{out} 20% to 80%; -P_{out} 80% to 20%
- 5. Effect on the negative output under the following conditions: + P_{out} 50%; - P_{out} 10% to 50% 6. Indefinite short circuit protection not guaranteed above 125°C case.
- 7. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 8. Transition time \geq 10 μ s.

DC/DC CONVERTERS

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

TRIPLE OUTPUT MODELS				MTR2851	2T				
PARAMETER	CONDI	TION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	MAI	N	4.95	5.0	5.05	4.95	5.0	5.05	
	+ AUXIL	JARY	11.82	12.0	12.18	14.77	15.0	15.23	VDC
	– AUXIL	JARY	11.82	12.0	12.18	14.77	15.0	15.23	
OUTPUT CURRENT ¹	MAI	N	0.5	_	4.0	0.5	_	4.0	
V _{IN} = 16 TO 40	+ AUXIL	_	0.416	0.750	_	0.333	0.600	Α	
		JARY	_	0.416	0.750	_	0.333	0.600	
OUTPUT POWER ¹	MAI	N	_	20	20	_	20	20	
V _{IN} = 16 TO 40	+ AUXIL	JARY	_	5	9	_	5	9	w
	– AUXIL	JARY	_	5	9	_	5	9	- vv
	TOT	AL	_	_	30	_	_	30	
OUTPUT RIPPLE	10 kHz to 2 MHz		_	50	115	_	50	115	mV p-p
VOLTAGE			_	20	80	_	20	80	
LINE REGULATION	MAI	N	_	10	20	_	10	20	mV
V _{IN} = 16 TO 40	±AUXILIARY		_	25	60	_	30	75] ""
LOAD REGULATION ^{2, 3}	MAIN		_	10	20	_	10	50	mV
	± AUXIL	± AUXILIARY		30	75	_	30	75	
INPUT VOLTAGE	CONTINUOUS		16	28	40	16	28	40	
	TRANSIEN	_		50	_	_	50	VDC	
INPUT CURRENT	NO LO	_	70	100	_	70	100	mA	
	FULL L	_	1.37	1.45	_	1.37	1.45	Α	
	INHIBI	_	3.0	8	_	3.0	8	mA	
INPUT RIPPLE CURRENT	10 kHz TO	10 MHz	_	20	40	_	20	40	mA p-p
EFFICIENCY			72	75	_	73	75	_	%
LOAD FAULT ⁴	POWER DIS	SIPATION							
	SHORT C	IRCUIT							
	ALL OUTPUTS SI	HORTED TOTAL	_	_	14	_	_	14	W
	RECOVERY EA	CH OUTPUT	_	1.4	2.0	_	1.4	2.0	ms
STEP LOAD RESPONSE	TDANOIENT5	MAIN	_	150	250	_	150	250	
	TRANSIENT ⁵	± AUXILIARY	_	500	750	_	500	750	mV
	RECOVERY ⁶	MAIN	_	0.05	0.10	_	0.05	0.10	ms
	TIEGOVEITI	± AUXILIARY	_	3	5	_	2	5	
STEP LINE RESPONSE	TRANSIENT	MAIN		150	250		150	250	mV
V _{IN} = 16 TO 40	551	± AUXILIARY	_	100	250	_	100	250	
START-UP	DEL	MAIN		1.4 0	2.0 500	_	1.4 0	2.0 500	ms
	OVERSHOOT	IVIAIIN		U	500		U	300	mV


Notes

- 1. The sum of the two aux outputs is not to exceed 10 watts. The maximum load per aux output is 9 watts.
- 2. To maintain regulation when operating the ±Aux at full load, a minimum load of 500 mA is required on the main.
- 3. Measured on each output one at a time with the other outputs at full load.
- 4. Indefinite short circuit protection not guaranteed above 125°C (case).
- Response of each output as all outputs are simultaneously transitioned.
 Main: 50% 100% 50% of main full load
 - Auxiliaries: 25% 50% 25% each, of total auxiliary full load
- 6. Recovery time is measured from application of the transient to point at which Vout is within 1% of regulation.

MTR SERIES 30 WATT

TRIM AND REMOTE SENSE (AVAILABLE ON SINGLE OUTPUT MODELS ONLY)

EXTERNAL TRIM CONNECTION

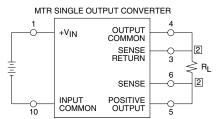
1 Make connections at converter.

FIGURE 1: TRIM CONNECTION 1, 2, 3

Trim Formulas

Vout = desired output voltage; Rt = trim resistor 3.3V: Rt = 1300 * Vout - 4304

1.2475


5V: Rt = 1300 * Vout - 6512

1.2470 200 - Vout - 1560

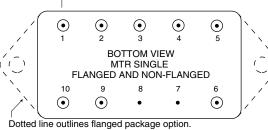
12V: Rt = 1300 * Vout - 156311.2475

15V: Rt = 1300 * Vout - 19498

1.2475

REMOTE SENSE CONNECTION

Make connections at load.

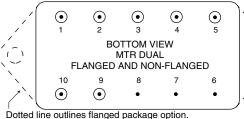

FIGURE 2: REMOTE SENSE^{2, 3}

Notes for Remote Sense and Trim

- When trimming output voltage and/or remote sensing, the total output voltage increase must be less than 0.6 volts at the converters pins to maintain specified performance.
- If neither voltage trim nor remote sense will be used, connect pin 3 to pin 4 and pin 5 to pin 6 or the output voltage will increase by 1.2 volts.
- 3. CAUTION: The converter will be permanently damaged if the positive remote sense (pin 6) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load with the remote sense leads connected to the load.

PIN OUT

Dot on top of cover indicates pin one.



See pages 10, 13, and for dimensions.

--- p-g-- --, --, ---- -------

FIGURE 3: PIN OUT SINGLE OUTPUT MODELS

/ Dot on top of cover indicates pin one.

See pages 10, 11, 13, 14, and 15 for dimensions.

FIGURE 4: PIN OUT DUAL OUTPUT MODELS

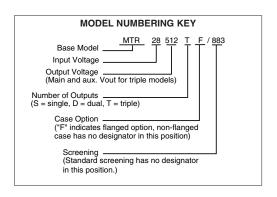
Pin	Single Output	Dual Output	Triple Output		
1	Positive Input	Positive Input	Positive Input		
2	Inhibit	Inhibit	Main (+5) Output		
3	Sense Return	Positive Output	Output Common		
4	Output Common	Output Common	Neg. Aux. Output		
5	Positive Output	Negative Output	Pos. Aux. Output		
6	Positive Sense	Case Ground	Case Ground		
7	Case Ground	Case Ground	Case Ground		
8	Case Ground	Case Ground	Inhibit		
9	Sync	Sync	Sync		
10	Input Common	Input Common	Input Common		

Squared corner and dot on top of package indicate pin one.

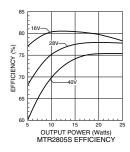
/	•	•	•	•	•	`\
,	1	2	3	4	5	`\
<u> </u>	FLA	D				
`\	10	9	8	7	6	/
<u></u>	•	•	•	•	•]	, /
Dotted	line outli	ines flano	ed packa	ge option	1.	

See pages 9 and 12 for dimensions.

FIGURE 5: PIN OUT TRIPLE OUTPUT MODELS



DC/DC CONVERTERS


STANDARD MICROCIRCUIT	MTR SERIES
DRAWING (SMD)	SIMILAR PART
5962-0150101HXC	MTR283R3S/883
5962-9306801HXC	MTR2805S/883
5962-9306901HXC	MTR2812S/883
5962-9307001HXC	MTR2815S/883
5962-9320201HXC	MTR2818S/883
5962-9320501HXC	MTR2805D/883
5962-9307101HXC	MTR2812D/883
5962-9307201HXC	MTR2815D/883
5962-9307301HXC	MTR28512T/883
5962-9307401HXC	MTR28515T/883

To indicate the flanged case option change the "X" to "Z" In the SMD number. The SMD number shown is for Class H screening, nonflanged. For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from:

http://www.dscc.dla.mil/programs/smcr

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

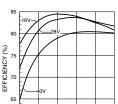
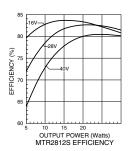



FIGURE 6

FIGURE 9

OUTPUT POWER (Watts)

MTR2812D EFFICIENCY

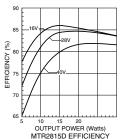


FIGURE 7

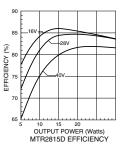


FIGURE 10

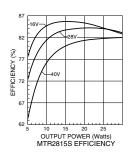
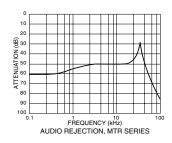
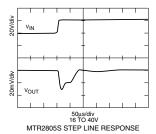
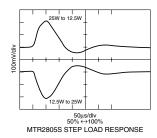
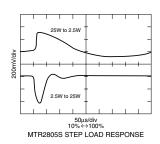


FIGURE 8


FIGURE 11



MTR SERIES 30 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

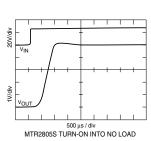


FIGURE 13

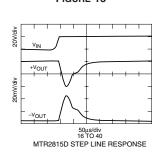


FIGURE 14

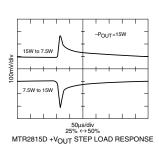


FIGURE 15

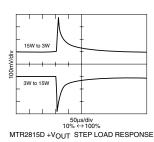


FIGURE 16

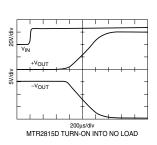


FIGURE 17

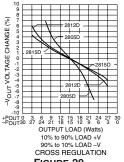


FIGURE 18

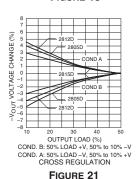


FIGURE 19

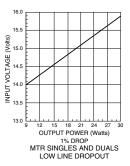


FIGURE 20

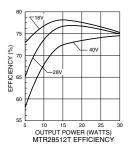


FIGURE 22

FIGURE 23

DC/DC CONVERTERS

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

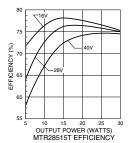


FIGURE 24

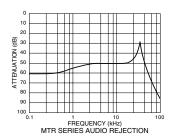


FIGURE 25

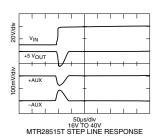
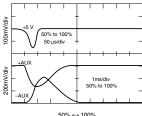



FIGURE 26

 $50\% \leftrightarrow 100\%$ MTR28515T STEP LOAD RESPONSE

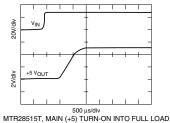


FIGURE 28

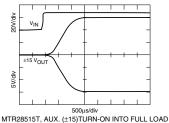


FIGURE 29

FIGURE 27

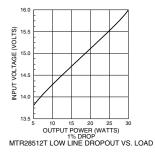


FIGURE 30

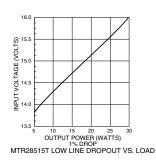
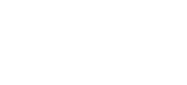
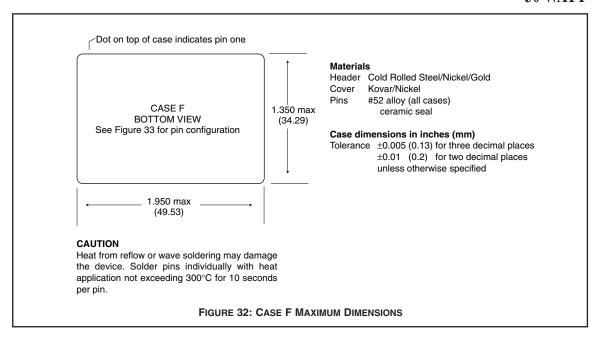
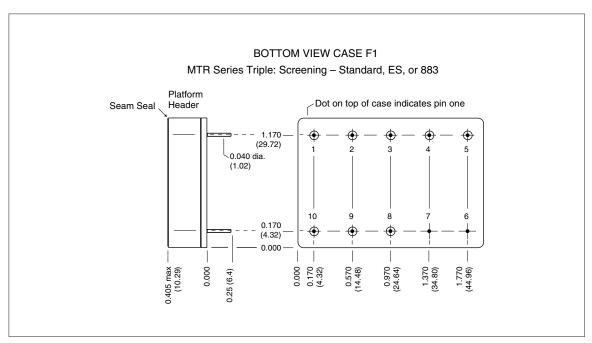
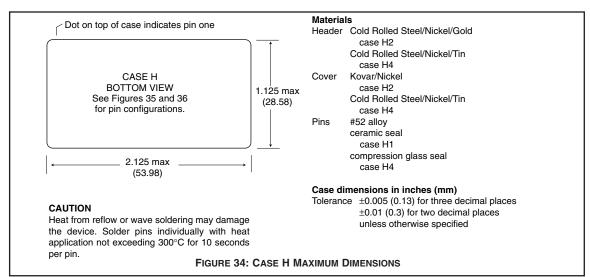
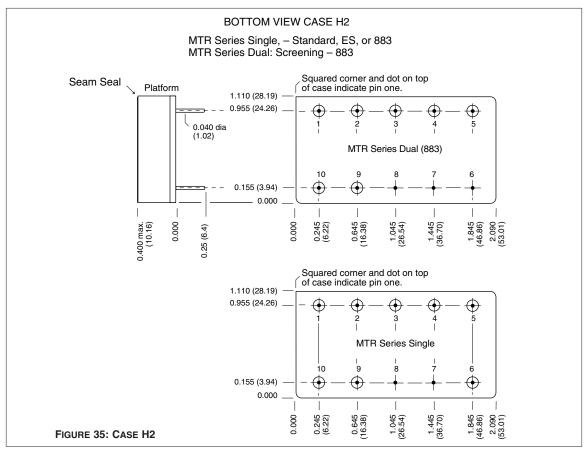
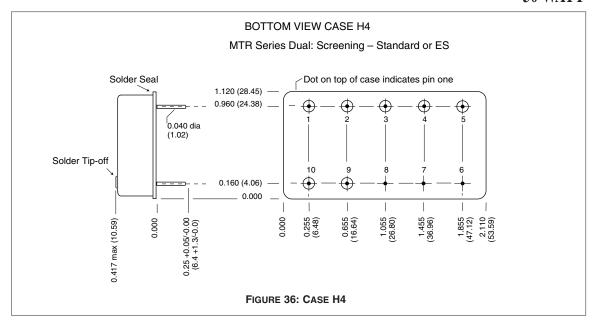





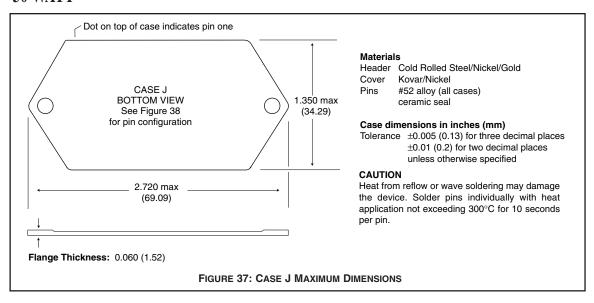
FIGURE 31

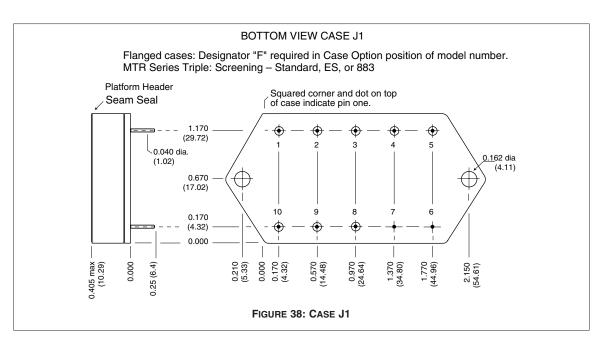


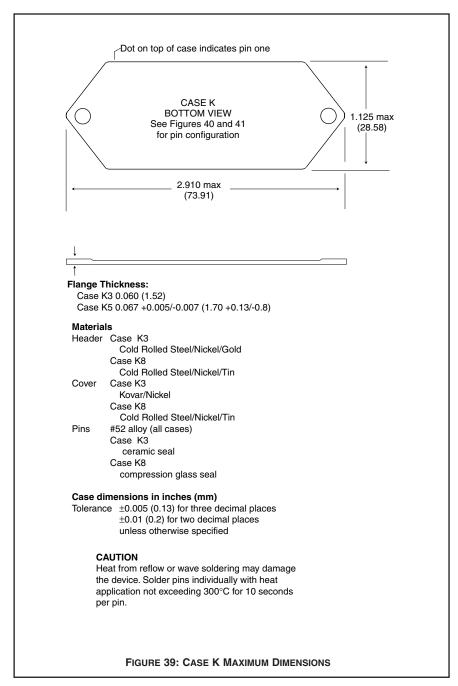


Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

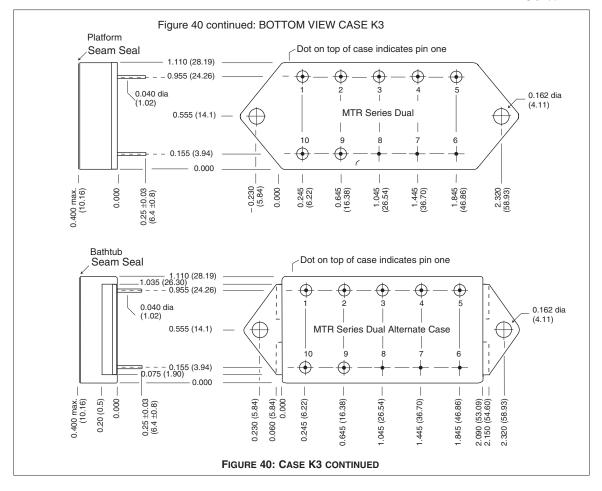

DC/DC CONVERTERS




MTR SERIES 30 WATT



DC/DC CONVERTERS



BOTTOM VIEW CASE K3 Flanged cases: Designator (F) required in Case Option position of model number. MTR Series Single and Dual: Screening - Standard, ES, or 883 Note: Do ensure timely delivery of product the MTR Series will be built using the most readily available of the cases illustrated below. Also, the MTR Dual, with standard or ES screening, may also be built in case K5. Platform Seam Seal Dot on top of case indicates pin one - 1.110 (28.19) - - - 0.955 (24.26) 0.040 dia 0.162 dia (1.02)(4.11)MTR Series Single 0.555 (14.1) 10 0.155 (3.94) 0.000 0.400 max. (10.16) 0.230 (5.84) 0.245 (6.22) 0.645 (16.38) 1.045 (26.54) 1.845 (46.86) ±0.03 0.000 0.000 0.25 Bathtub Dot on top of case indicates pin one Seam Seal 1.110 (28.19) 1.035 (26.30) = - - - 0.955 (24.26) 0.040 dia 0.162 dia (1.02)(4.11)0.555 (14.1) MTR Series Single Alternate Case 10 9 6 **(** ∋ - - - 0.155 (3.94) 0.075 (1.90) 0.000 0.400 max. (10.16) 0.060 (5.84) 2.090 (53.09) 0.25 ±0.03 (6.4 ±0.8) 0.20 (0.5) 0.000 0.230 (5.84) .845 (46.86) 0.245 (6.22) 645 (16.38) .045 (26.54) 1.445 (36.70) 2.320 (58.93) FIGURE 40: CASE K3 (CONTINUED ON NEXT PAGE)

MTR SERIES 30 WATT

BOTTOM VIEW CASE K5

Flanged cases: Designator "F" required in Case Option position of model number. MTR Series Dual: Screening - Standard or ES

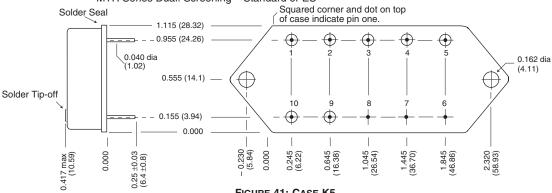


FIGURE 41: CASE K5

DC/DC CONVERTERS

ENVIRONMENTAL SCREENING

TEST	STANDARD	/ES	/883 (Class H)*
DDE OAD INODEOTION			
PRE-CAP INSPECTION			
Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times)			
Method 1010, Cond. C, -65°C to 150°C	no	no	yes
Method 1010, Cond. B, -55°C to 125°C	no	yes	no
CONSTANT ACCELERATION			
Method 2001, 3000 g	20	no	1/00
, 9	no	no	yes
Method 2001, 500 g	no	yes	no
BURN-IN			
Method 1015, 160 hours at 125°C	no	no	yes
96 hours at 125°C case (typical)	no	yes	no
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
		,	
HERMETICITY TESTING			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
FINAL VISUAL INSPECTION			
Method 2009	VOC	VOC	V06
MELLIOU 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Contact Information: www.interpoint.com

Interpoint Headquarters USA

Phone: 1-800-822-8782

+425-882-3100

Email: power@intp.com

Interpoint UK Interpoint France

^{*883} products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of -55°C to +125°C.