July 1998

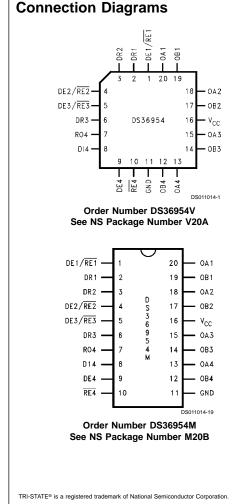
National Semiconductor

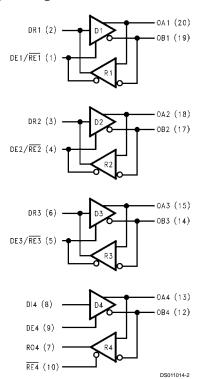
DS36954 **Quad Differential Bus Transceiver**

General Description

The DS36954 is a low power, quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, I/O bus applications. A compact 20-pin surface mount PLCC or SOIC package provides high transceiver integration and a very small PC board footprint.

Propagation delay skew between devices is specified to aid in parallel interface designs - limits on maximum and minimum delay times are guaranteed.


Five devices can implement a complete SCSI initiator or target interface. Three transceivers in a package are pinned out


for data bus connections. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.

Features

- Pinout for SCSI interface
- Compact 20-pin PLCC or SOIC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink currents
- Thermal shutdown protection
- Glitch-free driver outputs on power up and down

Logic Diagrams

© 1999 National Semiconductor Corporation DS011014

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	7V
Control Input Voltage	V _{CC} + 0.5V
Driver Input Voltage	$V_{CC} + 0.5V$
Driver Output Voltage/	
Receiver Input Voltage	-10V to +15V
Receiver Output Voltage	5.5V
Continuous Power Dissipation @	+25°C
V Package	1.73W
M Package	1.73W
Derate V Package	13.9 mW/°C above +25°C

Derate M Package	13.7 mW/°C above +25°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature	
(Soldering 4 Sec.)	260°C

Recommended **Operating Conditions**

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Free Air			
Temperature (T _A)	0	+70	°C

Electrical Characteristics (Note 2)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER	CHARACTERISTICS					
V _{ODL}	Differential Driver Output	I _L = 60 mA	1.5	1.9		V
	Voltage (Full Load)	$V_{CM} = 0V$				
V _{OD}	Differential Driver Output	R _L = 100Ω (EIA-422)	2.0	2.25		V
	Voltage (Termination Load)	R _L = 54Ω (EIA-485)	1.5	2.0		V
ΔIVODI	Change in Magnitude of Driver	R _L = 54 or 100Ω				
	Differential Output Voltage for	(Note 4) (Figure 1)			0.2	V
	Complementary Output States	(EIA-422/485)				
V _{oc}	Driver Common Mode	R _L = 54Ω (<i>Figure 1</i>) (EIA-485)			3.0	V
	Output Voltage (Note 5)					
	Change in Magnitude of	(Note 4) (Figure 1)			0.2	V
	Common Mode Output Voltage	(EIA-422/485)				
V _{он}	Output Voltage High	I _{он} = –55 mA	2.7	3.2		V
V _{OL}	Output Voltage Low	I _{OL} = 55 mA		1.4	1.7	V
V _{IH}	Input Voltage High		2.0			V
V _{IL}	Input Voltage Low				0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-1.5	V
I _{IH}	Input High Current	V _{IN} = 2.4V (Note 3)			20	μA
I _{IL}	Input Low Current	V _{IN} = 0.4V (Note 3)			-20	μA
I _{osc}	Driver Short-Circuit	V _O = -7V (EIA-485)		-130	-250	mA
	Output Current	V _O = 0V (EIA-422)		-90	-150	mA
	(Note 9)	V _O = +12V (EIA-485)		130	250	mA
RECEIVE	R CHARACTERISTICS	•	L			•
IOSR	Short Circuit Output Current	V _O = 0V (Note 9)	-15	-28	-75	mA
l _{oz}	TRI-STATE [®] Output Current	$V_{\rm O} = 0.4$ V to 2.4V			20	μA
V _{OH}	Output Voltage High	V _{ID} = 0.2V, I _{OH} = 0.4 mA	2.4	3.0		V
V _{OL}	Output Voltage Low	$V_{ID} = -0.2V, I_{OL} = 4 \text{ mA}$		0.35	0.5	V
V_{TH}	Differential Input High	$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$		0.03	0.2	V
	Threshold Voltage	(EIA-422/485)				
V _{TL}	Differential Input Low	$V_{O} = V_{OL}, I_{O} = 4.0 \text{ mA}$	-0.20	-0.03		V
	Threshold Voltage (Note 6)	(EIA-422/485)				
V _{HST}	Hysteresis (Note 7)	V _{CM} = 0V	35	60		mV
	AND RECEIVER CHARACTERIST	ICS	•	-	•	-
V _{IH}	Enable Input Voltage High		2.0			V
VIL	Enable Input Voltage Low				0.8	V

Symbol	pply Voltage and Operating Tempe Parameter	<u> </u>	Conditi		Min	Тур	Max	Units
		ICS				.,,,	induk	
V _{CL}	Enable Input Clamp Voltage	I _{CL} = -18	3 mA			1	-1.5	V
I _{IN}	Line Input Current	Other Inp		V _I = +12V		0.5	1.0	mA
-11N	(Note 8)	DE/RE =	-	$V_1 = -7V$		-0.45	-0.8	mA
	(1000 0)	DE4 = 0.		.,		0.10		
I _{ING}	Line Input Current	Other Inp		V ₁ = +12V		+	1.0	mA
'ING	(Note 8)	DE/RE and DE4 = 2V						
	$V_{\rm CC} = 3.0$ $T_{\rm A} = +25^{\circ}$		-	V ₁ = -7V		-	-0.8	mA
				.,				
IIH	Enable Input	$V_{IN} = 2.4$		V _{CC} = 3.0V		1	40	μA
	Current High	DE/RE		$V_{CC} = 4.75V$		1		μΑ
	3			$V_{CC} = 5.25V$		1	40	μA
		V _{IN} = 2.4	v	$V_{\rm CC} = 3.0V$		1	20	μΑ
		DE4 or R	ł	$V_{\rm CC} = 5.25 V$		1	20	μΑ
I _{II}	Enable Input	V _{IN} = 0.8		$V_{\rm CC} = 3.0V$		-6	-40	μA
12	Current Low	DE/RE		$V_{\rm CC} = 4.75V$		-12	<u> </u>	μA
				$V_{\rm CC} = 5.25V$		-14	-40	μΑ
		V _{IN} = 0.8	V	$V_{\rm CC} = 3.0 V$		-3	-20	μA
				00			-	<u> </u>
		DE4 or R	E4	$V_{CC} = 5.25V$		-7	-20	μA
Iccp	Supply Current (Note 10)	DE4 or R No Load,	E4 DE/RE and DE	$V_{\rm CC} = 5.25V$ 4 = 2.0V		-7 75	-20 90	· · .
Swite	Supply Current (Note 10)	No Load, No Load,	DE/RE and DE DE/RE and RE	4 = 2.0V 4 = 0.8V			-	mA
I _{CCR} Swite Over Su	Supply Current (Note 10) Ching Characteristics Ipply Voltage and Operating Tempe	No Load, No Load,	DE/RE and DE DE/RE and RE	4 = 2.0V $\overline{4} = 0.8V$ wise specified.	Min	75 50	90 70	mA mA
Swite Over Su Symbol	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter	No Load, No Load, rature range	DE/RE and DE DE/RE and RE	4 = 2.0V 4 = 0.8V	Min	75	90	mA mA
I _{CCR} Switc Over Su Symbol DRIVER	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERIST	No Load, No Load, rature range	DE/RE and DE DE/RE and RE es, unless other Con	$\frac{4}{4} = 2.0 \vee$ $\frac{4}{4} = 0.8 \vee$ wise specified. ditions		75 50 Typ	90 70 Max	mA mA Units
I _{CCR} Switc Over Su Symbol DRIVER	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERIST Output Enable Time to High Lev	No Load, No Load, rature range ICS vel	DE/RE and DE DE/RE and RE	$4 = 2.0V$ $\overline{4} = 0.8V$ wise specified. ditions (Figure 5)	Min	75 50 Typ 35	90 70 Max 40	mA mA Units
I _{CCR} Switc Over Su Symbol DRIVER t _{PZH} t _{PZL}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERIST Output Enable Time to High Lee Output Enable Time to Low Lew	No Load, No Load, rature range ICS vel rel	DE/RE and DE DE/RE and RE es, unless other Con	$4 = 2.0 \vee$ $\overline{4} = 0.8 \vee$ wise specified. ditions $(Figure 5)$ (Figure 6)		75 50 Typ 35 25	90 70 Max 40 40	mA mA Units
I _{ССR} Switc Over Su Symbol DRIVER t _{РZH} t _{РZL} t _{РHZ}	Supply Current (Note 10) Ching Characteristics upply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Lee Output Enable Time to Low Lew Output Disable Time to High Lee	No Load, No Load, rature range ICS vvel rel evel	DE/RE and DE DE/RE and RE es, unless other Con	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 5)	Min	75 50 Typ 35 25 15	90 70 Max 40 40 25	mA mA Units ns ns
I _{ССR} Switt Over Su Symbol DRIVER t _{РZL} t _{РНZ} t _{PHZ}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERIST Output Enable Time to High Le Output Enable Time to Low Lew Output Disable Time to High Le Output Disable Time to Low Lew	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con	$4 = 2.0 \vee$ $\overline{4} = 0.8 \vee$ wise specified. ditions $(Figure 5)$ (Figure 6)	Min	75 50 Typ 35 25	90 70 Max 40 40	mA mA Units
I _{сск} Switt Over Su Symbol DRIVER t _{РZH} t _{РZL} t _{РHZ} t _{PLZ} DRIVER	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Lev Output Enable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTI	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 5)	Min	75 50 Typ 35 25 15 35	90 70 Max 40 40 25 40	Units Units ns ns ns
I _{ССR} Switt Over Su Symbol DRIVER t _{РZH} t _{РZL} t _{РHZ} DRIVER t _r t _r	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Let Output Enable Time to Low Lev Output Disable Time to High Le Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 5)		75 50 Typ 35 25 15 35 13	90 70 Max 40 40 25 40 16	Units Units ns ns ns ns ns
I _{ССR} Switt Over Su Symbol DRIVER t _{РZH} t _{РZL} t _{РHZ} t _{PHZ} DRIVER t _r , t _t t _{PLHD}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Enable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 5)	9	75 50 Typ 35 25 15 35 13 15	90 70 Max 40 40 25 40 16 19	ns ns ns ns ns
I _{ССR} Switc Over Su Symbol DRIVER t _{РZH} t _{РZL} t _{РHZ} t _{PLZ} DRIVER t _r , t _r t _{PLHD} t _{PHLD}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Lee Output Disable Time to Low Lev Output Disable Time to Low Lee DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15)	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)		75 50 Typ 35 25 15 35 13 15 12	90 70 Max 40 40 25 40 16 19 19	Units Units ns ns ns ns ns ns ns ns
I _{ССК} Switt Over Su Symbol DRIVER tpzH tpzH tpzL tpHZ tpHZ tpHZ tpHZ tpHZ tpHZ tpHD tpHD tpHD tsKD	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Disable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) t _{PLHD} - t _{PHLD} Diff. Skew	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	9	75 50 Typ 35 25 15 35 13 15	90 70 Max 40 40 25 40 16 19	MA MA MA MA MA MA MA MA MA MA MA MA MA M
I _{CCR} Switt Over Su Symbol DRIVER t _{PZL} t _{PHZ} t _{PHZ} t _{PLZ} DRIVER t _r , t _f t _{PLLD} t _{PHLD} t _{SKD} RECEIVE	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Enable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) [t _{PLHD} - t _{PHLD}] Diff. Skew CHARACTERISTICS	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4,</i>	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	9	75 50 Typ 35 25 15 35 13 15 12 3	90 70 Max 40 40 25 40 16 19 19 6	Units Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In
I _{CCR} Switc Over Su Symbol DRIVER t _{PZL} t _{PLZ} t _{PLZ} DRIVER t _r , t _f t _{PLLD} t _{SKD} RECEIVE t _{PLHD}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Disable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) t _{PLHD} - t _{PHLD} Diff. Skew	No Load, No Load, rature range ICS vvel rel evvel vvel vvel	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4</i> , $C_L = 15 \text{ pF}$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	999	75 50 Typ 35 25 15 35 13 15 3 14	90 70 Max 40 40 25 40 16 19 19 19 19 19	Units Units ns ns ns ns ns ns ns ns ns ns
Iccr Switc Over Su Symbol DRIVER tpzh tpzL tpHz tpLz DRIVER tpLz DRIVER tpLz Receive tpHz tpLz RECEIVE tskD RECEIVE tpHD tpHD	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Lee Output Enable Time to High Lee Output Disable Time to High Lee Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) [t _{PLHD} - t _{PHLD}] Diff. Skew CHARACTERISTICS Differential Propagation Delays	No Load, No Load, rature range ICS vel vel vel CS	DE/RE and DE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4,</i> $C_L = 15 \text{ pF}$ $V_{CM} = 2.0V$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	9	75 50 Typ 35 25 15 35 13 15 12 3	90 70 Max 40 40 25 40 16 19 19 6	Units Units Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In
Iccr Switc Over Su Symbol DRIVER tpzh tpzL tpLZ DRIVER tpLZ DRIVER tpLZ DRIVER tpLZ DRIVER tpLD tpLHD tpHLD tsKD tpHLD tpHLD tpHLD tpHLD tpHLD tpHLD tpHLD	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Enable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) [t _{PLHD} - t _{PHLD}] Diff. Skew CHARACTERISTICS	No Load, No Load, rature range vel vel vel cs	DE/RE and DE DE/RE and RE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4,</i> $C_L = 15 \text{ pF}$ $V_{CM} = 2.0V$ (<i>Figure 7</i>)	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	999	75 50 Typ 35 25 15 35 13 15 12 3 14 13	90 90 70 70 Max 40 40 25 40 25 40 10 16 19 19 6 19 19 19 19 19 19 19 19	Units Units ns ns ns ns ns ns ns ns ns ns
Сск Switc Over Su Symbol DRIVER 5 t _{PZH} t _{PLZ} DRIVER t _{PHZ} DRIVER t _{PHZ} CREEIVER t _{PHLD} t _{SKD} t _{PHLD} t _{PHLD} t _{PHLD} t _{SKD}	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Enable Time to Low Lev Output Disable Time to Low Lev Output Disable Time to Low Lev Output Disable Time to Low Lev IDIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) [t _{PLHD} - t _{PHLD}] Diff. Skew R CHARACTERISTICS Differential Propagation Delays [t _{PLHD} - t _{PHLD}] Diff. Receiver Si Output Enable Time to High Lev	No Load, No Load, rature range vel rel vel CS CS	DE/RE and DE DE/RE and RE DE/RE and RE es, unless other Con $R_L = 110\Omega$ $R_L = 54\Omega$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4,</i> $C_L = 15 \text{ pF}$ $V_{CM} = 2.0V$ (<i>Figure 7</i>) $C_L = 15 \text{ pF}$	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	999	75 50 Typ 35 25 15 35 13 15 3 14 13 14 13 15	90 90 70 Max 40 40 25 40 16 19 19 19 3 22	Units Units Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In
Iccr Switc Over Su Symbol DRIVER tpzh tpzL tpHz tpLz DRIVER tpLz DRIVER tpLz Receive tpHz tpLz RECEIVE tskD RECEIVE tpHD tpHD	Supply Current (Note 10) Ching Characteristics pply Voltage and Operating Tempe Parameter SINGLE-ENDED CHARACTERISTI Output Enable Time to High Le Output Enable Time to High Le Output Disable Time to High Le Output Disable Time to Low Lev Output Disable Time to Low Lev DIFFERENTIAL CHARACTERISTIC Rise and Fall Time Differential Propagation Delays (Note 15) [t _{PLHD} - t _{PHLD}] Diff. Skew R CHARACTERISTICS Differential Propagation Delays [t _{PLHD} - t _{PHLD}] Diff. Receiver St	No Load, No Load, No Load, rature range vel rel vel CS CS	DE/RE and DE DE/RE and RE DE/RE and RE es, unless other Con $R_L = 110Ω$ $R_L = 54Ω$ $C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$ (<i>Figures 3, 4,</i> $C_L = 15 \text{ pF}$ $V_{CM} = 2.0V$ (<i>Figure 7</i>)	4 = 2.0V 4 = 0.8V wise specified. ditions (Figure 5) (Figure 6) (Figure 6)	999	75 50 Typ 35 25 15 35 13 15 3 14 13 14 13 1	90 90 70 70 Max 40 40 25 40 10 16 19 19 6 19 19 3 3	Units Units Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In

Note 3: I_{IH} and I_{IL} include driver input current and receiver TRI-STATE leakage current on DR(1-3).

· ·

Note 4: Δ IVODI and Δ IVOCI are changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input changes state.

Switching Characteristics (Continued)

Note 5: In EIA Standards EIA-422 and EIA-485, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as V_{HST} = V _{TH} – V_{TL}.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: Short one output at a time.

Note 10: Total package supply current.

Note 11: All typicals are given for V_{CC} = 5.0V and T_A = +25°C.

Parameter Measurement Information

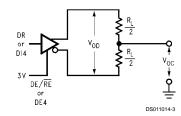


FIGURE 1. Driver V_{OD} and V_{OC} (Note 13)

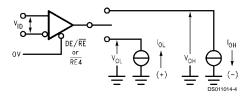


FIGURE 2. Receiver $V_{\rm OH}$ and $V_{\rm OL}$

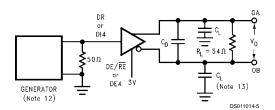


FIGURE 3. Driver Differential Propagation Delay Load Circuit

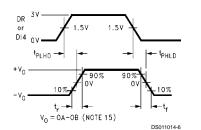
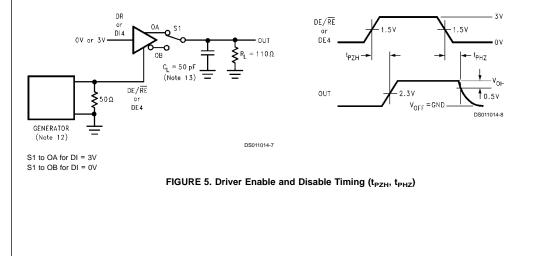
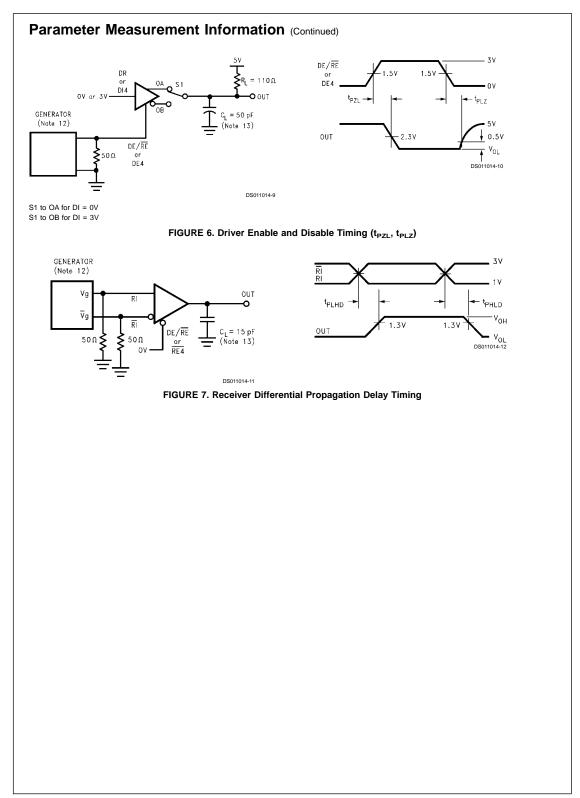
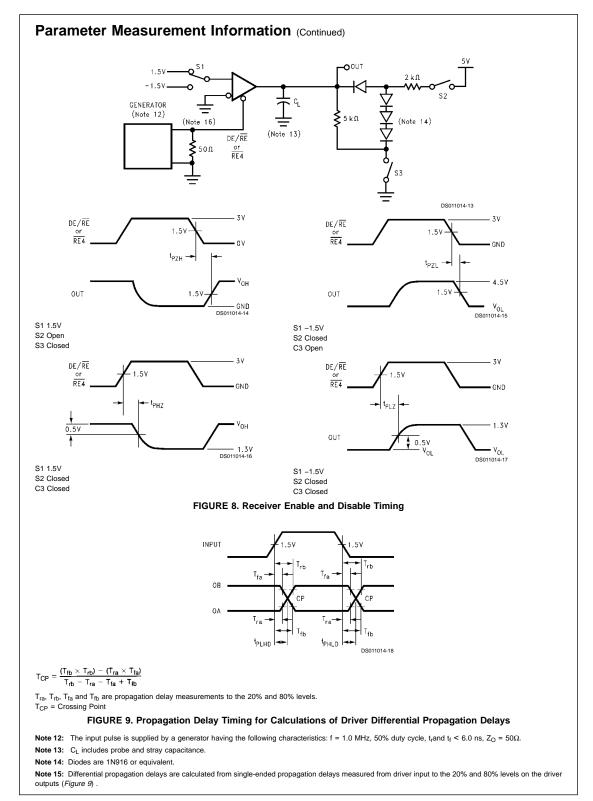
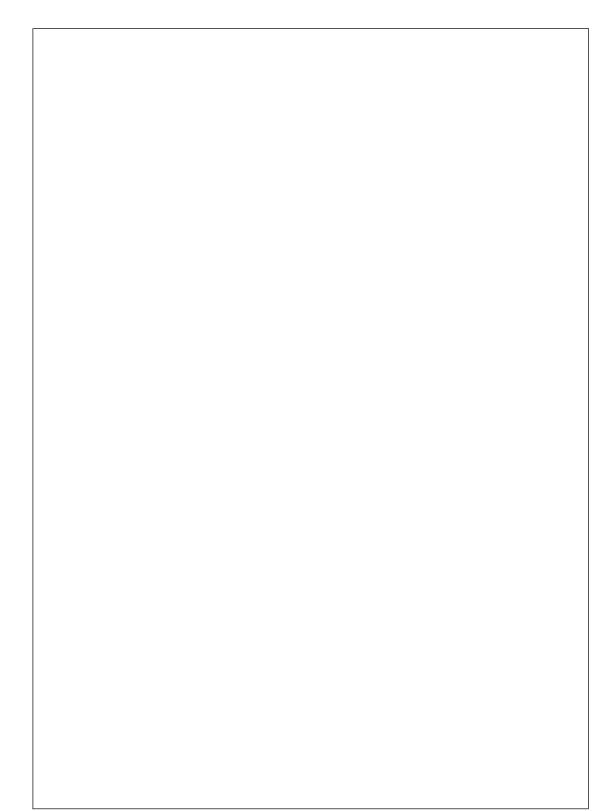
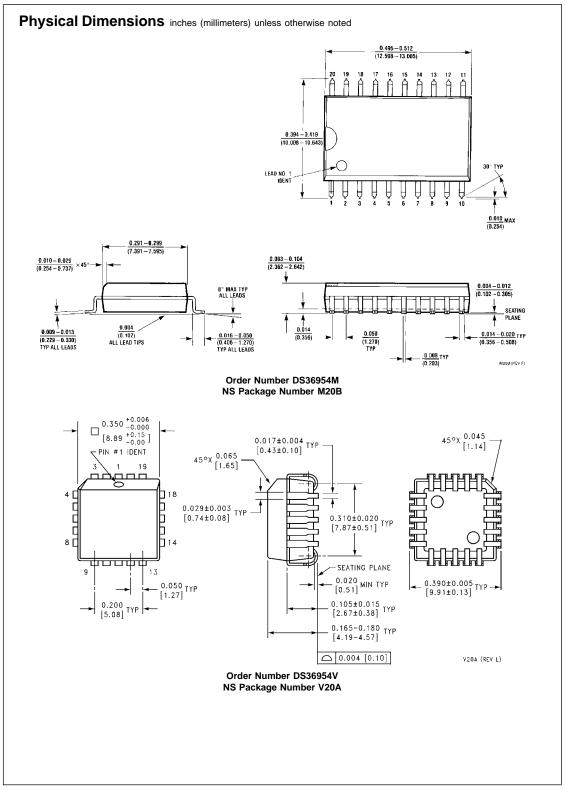





FIGURE 4. Driver Differential Propagation Delays and Transition Times





Parameter Measurement Information (Continued)

Note 16: On transceivers 1–3 the driver is loaded with receiver input conditions when DE/RE is high. Do not exceed the package power dissipation limit when testing.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

^	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
ν	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
ww.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.