CXK581000ATM/AYM/AM/AP -55LL/70LL/10LL -55SL/70SL/10SL

131072-word × 8-bit High Speed CMOS Static RAM

For the availability of this product, please contact the sales office.

Description

SONY

The CXK581000ATM/AYM/AM/AP is a high speed CMOS static RAM organized as 131072-words by 8 bits.

A polysilicon TFT cell technology realized extremely low stand- by current and higher data retention stability.

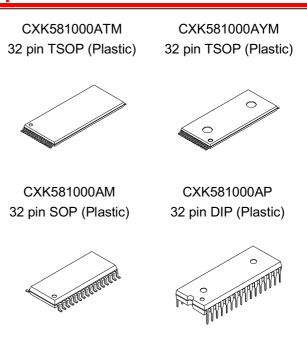
Special feature are low power consumption, high speed and broad package line-up.

The CXK581000ATM/AYM/AM/AP ia a suitable RAM for portable equipment with battery back up.

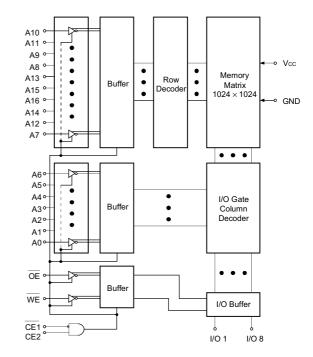
Features

• Fast access time:

CXK581000ATM/AYM/AM/AP	(Access time)
-55LL/55SL	55ns (Max.)
-70LL/70SL	70ns (Max.)
-10LL/10SL	100ns (Max.)
 Low standby current: 	

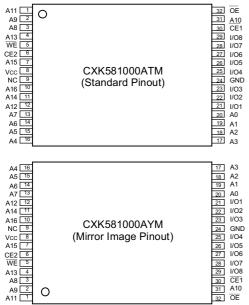

CXK581000ATM/AYM/AM/AP	
-55LL/70LL/10LL	20µA (Max.)
-55SL/70SL/10SL	12µA (Max.)

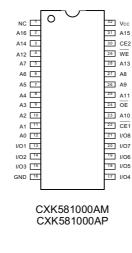
- Low data retention current CXK581000ATM/AYM/AM/AP
 -55LL/70LL/10LL
 12µA (Max.)
 -55SL/70SL/10SL
 4µA (Max.)
- Single +5V supply: +5V ±10%
- Low voltage data retention: 2.0V (Min.)
- Broad package line-up
- CXK581000ATM/AYM
 - $8mm \times 20mm$ 32 pin TSOP package
- CXK581000AM 525mil 32 pin SOP package
- CXK581000AP 600mil 32 pin DIP package
- Functions


131072-word \times 8-bit static RAM

Structure

Silicon gate CMOS IC




Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration (Top View)

Pin Description

Symbol	Description
A0 to A16	Address input
I/O1 to I/O8	Data input output
CE1, CE2	Chip enable 1, 2 input
WE	Write enable input
OE	Output enable input
Vcc	Power supply
GND	Ground
NC	No connection

Absolute Maximum Ratings

Absolute Maximum Ratings	(Ta = 25°C, G	SND = 0V		
Item		Symbol	Rating	Unit
Supply voltage	Vcc		-0.5 to +7.0	
Input voltage	Vin		–0.5* to Vcc +0.5	V
Input and output voltage	Vi/o		–0.5* to Vcc +0.5	
Allowable newer discinction	PD	CXK581000AP	1.0	W
Allowable power dissipation	CXK581000ATM/AYM/AI		0.7	vv
Operating temperature	Topr		0 to +70	°C
Storage temperature	Tstg		-55 to +150	C
Soldering temperature	Tsolder	CXK581000AP	260 • 10	°C•s
Soldening temperature	1301001	CXK581000ATM/AYM/AM	235 • 10	0,13

* VIN,VI/O = -3.0V Min. for pulse width less than 50ns.

Truth Table

CE1	CE2	ŌĒ	WE	Mode	I/O pin	Vcc Current
Н	×	×	×	Not selected	High Z	ISB1, ISB2
×	L	×	×	Not selected	High Z	ISB1, ISB2
L	Н	Н	Н	Output disable	High Z	Icc1, Icc2, Icc3
L	Н	L	Н	Read	Data out	Icc1, Icc2, Icc3
L	Н	Х	L	Write	Data in	Icc1, Icc2, Icc3

×: "H" or "L"

DC Recommended Operating Conditions

 $(Ta = 0 \text{ to } +70^{\circ}C, GND = 0V)$

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	
Input high voltage	Vін	2.2	_	Vcc +0.3	V
Input low voltage	VIL	-0.3*		0.8]

* VIL = -3.0V Min. for pulse width less than 50ns.

Electrical Characteristics

DC Characteristics

(Vcc = 5V ±10%, GND = 0V, Ta = 0 to = +70°C)

Item	Symbol	Test c	onditions		Min.	Typ.*1	Max.	Unit
Input leakage current	ILI	VIN = GND to Vcc			-1	—	1	
Output leakage current	Ilo	$\overline{CE1} = V_{IH} \text{ or } CE2 = V_{IL}$ or $\overline{WE} = V_{IL}, V_{I/O} = GNI$		′ін	-1	_	1	μA
Operating power supply current	Icc1	$\overline{CE1} = V_{IL}, CE2 = V_{IH}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OUT} = 0 \text{mA}$	VIN = VIH or VIL				15	
		Min. cycle	55LL/55	SL		45	90	1
	Icc2	Duty = 100%	70LL/70	SL		40	70	
		Iout = 0mA	10LL/10	SL	_	35	60	
Average operating current	dutv = 100%				_	10	20	• mA
				0 to +70°C	_	—	20	
		CE2 ≤ 0.2V	LL ^{*2}	0 to +40°C			4	
	ISB1	or $\int \overline{CE1} \ge Vcc - 0.2V$		+25°C	-	0.7	2	μA
Standby current	1361	$\begin{cases} CE1 \ge VCC = 0.2V\\ CE2 \ge VCC = 0.2V \end{cases}$		0 to +70°C			12	
			SL*3	0 to +40°C	-	—	2.4	
				+25°C	—	0.3	1	
	ISB2	CE1 = VIH or CE2 = VIL			-	0.6	3	mA
Output high voltage	Vон	Іон = –1.0mA			2.4	_	_	
Output low voltage	Vol	IoL = 2.1mA			_		0.4	V

*1 Vcc = 5V, Ta = 25°C

*2 For -55LL/70LL/10LL

*3 For -55SL/70SL/10SL

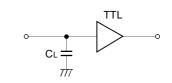
CXK581000ATM/AYM/AM/AP

I/O Capacitance

(Ta = 25°C, f = 1MHz)

Item	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Input capacitance	CIN	$V_{IN} = 0V$	_	_	7	nE
I/O capacitance	Cı/o	$V_{I/O} = 0V$			8	pi

Note) This parameter is sampled and is not 100% tested.


AC Characteristics

• AC test conditions

(Vcc = 5V±10%, Ta = 0 to +70°C)

Item	Conditions			
Input pulse high level		Vін = 2.2V		
Input pulse low level		VIL = 0.8V		
input rise time		tr = 5ns		
input fall time		tf = 5ns		
Input and output referen	ce level	1.5V		
	-55LL/55SL	C∟* = 30pF, 1TTL		
Output load conditions	-70LL/70SL	C∟* = 100pF, 1TTL		
	-10LL/10SL			

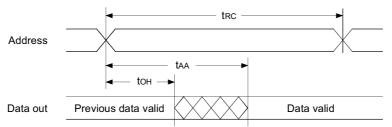
Test circuit

* C∟ includes scope and jig capacitances.

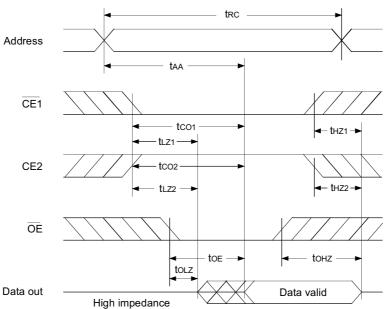
• Read cycle (WE = "H")

		-55LL	/55SL	-70LL	/70SL	-10LL	/10SL	
Item	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read cycle time	t RC	55	-	70	_	100	_	
Address access time	taa	_	55		70	—	100	
Chip enable access time (CE1)	t co1	_	55	—	70	—	100	
Chip enable access time (CE2)	tco2	_	55	—	70	_	100	
Output enable to output valid	toe		30	_	40	_	50	ns
Output hold from address change	tон	15	_	15	_	15	—	
Chip enable to output in low Z ($\overline{CE1}$, CE2)	t LZ1, t LZ2	10	_	10	_	10	_	
Output enable to output in low Z (\overline{OE})	t olz	5	_	5	—	5	_	
Chip disable to output in high Z ($\overline{CE1}$, CE2)	t HZ1, t HZ2*		25	—	25	_	35	
Output disable to output in high Z (\overline{OE})	t онz*	_	25		25	_	35	

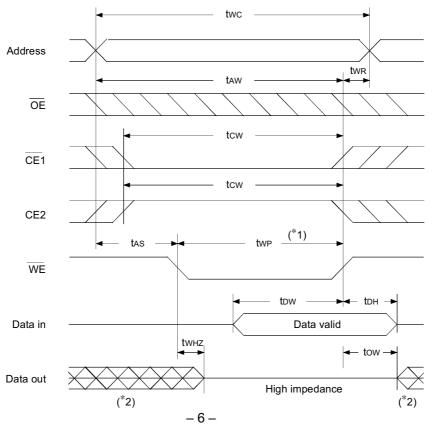
* tHz1, tHz2 and tOHz are defined as the time required for outputs to turn to high impedance state and are not referred to as output voltage levels.

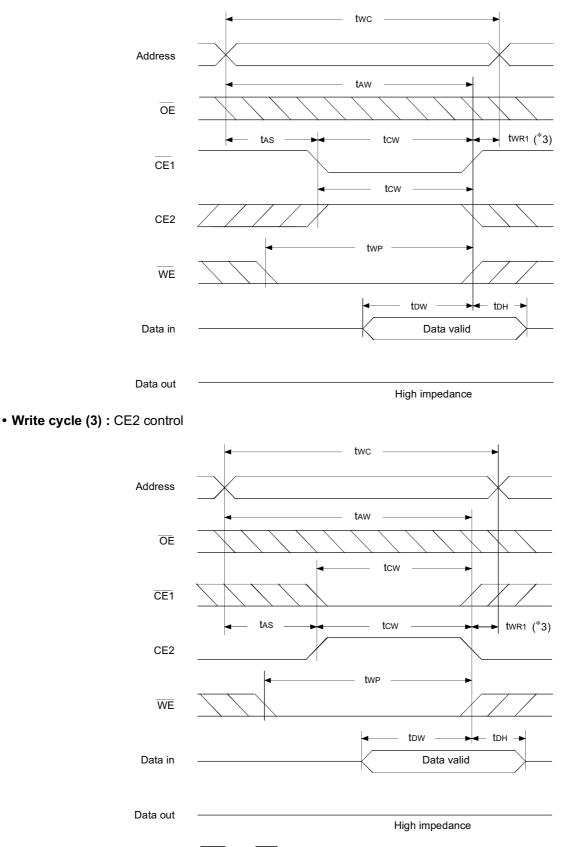

Write cycle

		-55LL	/55SL	-70LL	/70SL	-10LL	/10SL	
Item	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write cycle time	t wc	55	_	70	_	100	_	
Address valid to end of write	taw	50	—	60		70	—	
Chip enable to end of write	t cw	50	—	60	—	70	—	
Data to write time overlap	tow	25	—	30	—	40	—	
Data hold from write time	tdн	0	—	0	—	0	—	ns
Write pulse width	twp	40	—	50	—	70	—	
Address setup time	tas	0	-	0	—	0	_	
Write recovery time (WE)	twr	0	_	0	—	0	_	
Write recovery time (CE1, CE2)	twr1	0	_	0	—	0	—	
Output active from end of write	tow	10	_	10		10	_	
Write to output in high Z	t _{wHz} *	_	25	_	25	_	30	

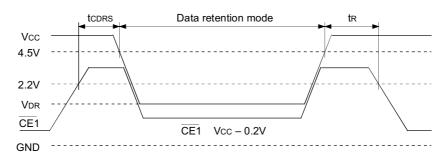

* twhz is defined as the time required for outputs to turn to high impedance state and is not referred to as output voltage level.

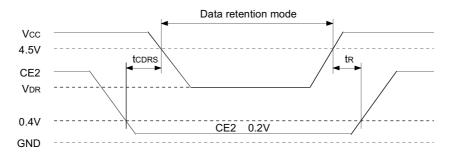
Timing Waveform


• Read cycle (1) : $\overline{CE1} = \overline{OE} = V_{IL}$, $CE2 = V_{IH}$, $\overline{WE} = V_{IH}$


• Read cycle (2) : WE = VIH

• Write cycle (1) : WE control


• Write cycle (2) : CE1 control


- *1 Write is executed when both $\overline{CE1}$ and \overline{WE} are at low and CE2 is at high simultaneously.
- *2 Do not apply the data input voltage of the opposite phase to the output while the I/O pin is in output condition.
- *3 twR1 is tested from either the rising edge of $\overline{CE1}$ or the falling edge of CE2, whichever comes earlier, until the end of the write cycle.

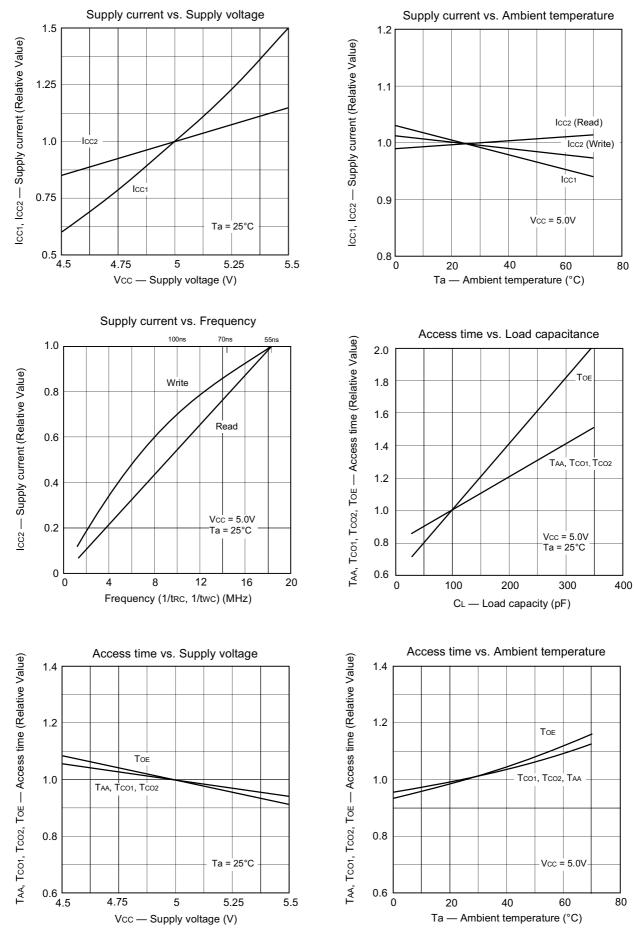
Data Retention Waveform

• Low supply voltage data retention waveform (1) : TE1 control

• Low supply voltage data retention waveform (2) : CE2 control

Data Retention Characteristics

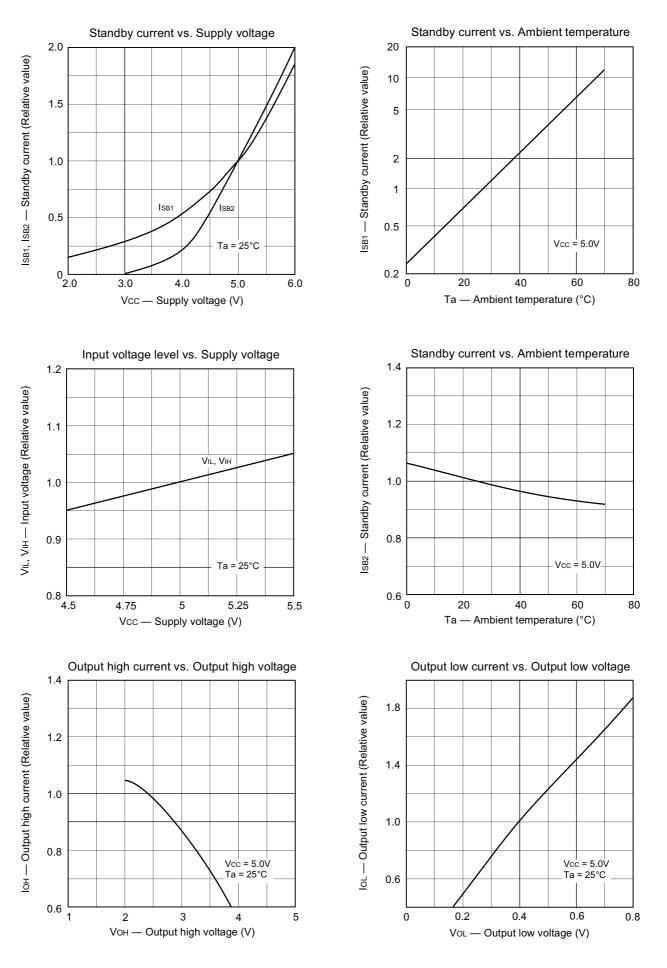
(Ta = 0 to +70°C)


Item	Symbol	Test co	nditions		Min.	Тур.	Max.	Unit
Data retention voltage	Vdr	*1					5.5	V
Data retention current				0 to +70°C	—	—	12	
			LL ^{*2}	0 to +40°C	—	—	2.4	
		1/22 - 20)/*1		+25°C	—	0.4	1.2	
	ICCDR1	Vcc = 3.0V*1	SL*3	0 to +70°C	—	—	4	
				0 to +40°C	_	_	0.8	μA
				+25°C	_	0.15	0.3	
	ICCDR2	Vcc = 2.0V to 5.5V*1	LL ^{*2}		_	0.7	20	
	ICCDR2	$VCC = 2.0V 10 5.5V^{-1}$	SL ^{*3}		_	0.3	12	
Data retention setup	tcdrs	Chin disable to date i	rotontion	modo	0			ns
time	LCDRS		Chip disable to data retention mode					115
Recovery time	t R				5	_		ms

Note)

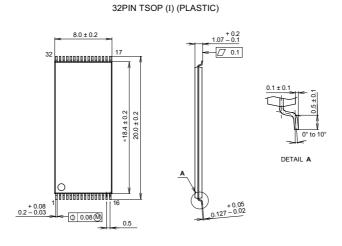
*1 $\overline{CE1} \ge Vcc - 0.2V$, $CE2 \ge Vcc - 0.2V$ [$\overline{CE1}$ Control] or $CE2 \le 0.2V$ [CE2 Control]

*2 For -55LL/70LL/10LL


*3 For -55SL/70SL/10SL

Example of Representative Characteristics

-9-



– 10 –

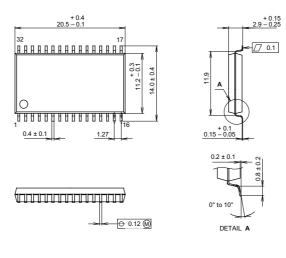
Package Outline Unit: mm

CXK581000ATM

(000000000000000000)

NOTE: Dimension "*" does not include mold protrusion.

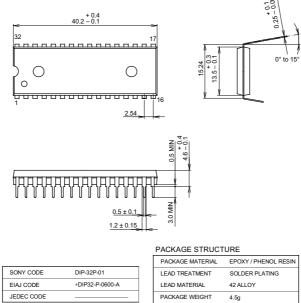
PACKAGE STRUCTURE


		PACKAGE MATERIAL	EPOXY / PHENOL RESIN
SONY CODE TSOP (I) -32F	-L01	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE TSOP (I) 032-	P-0820-A	LEAD MATERIAL	42 ALLOY
JEDEC CODE		PACKAGE WEIGHT	

CXK581000AYM

CXK581000ATM/AYM/AM/AP

CXK581000AM


32PIN SOP (PLASTIC) 525mil

PACKAGE STRUCTURE

		PACKAGE MATERIAL	EPOXY / PHENOL RESIN
SONY CODE	SOP-32P-L02	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE	*SOP032-P-0525-A	LEAD MATERIAL	42 ALLOY
JEDEC CODE		PACKAGE WEIGHT	

CXK581000AP

32PIN DIP (PLASTIC) 600mil

	PACKAGE MATERIAL	EPOXY / PHENOL RESIN
SONY CODE DIP-32P-01	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE *DIP32-P-0600-A	LEAD MATERIAL	42 ALLOY
JEDEC CODE	PACKAGE WEIGHT	4.5g