DATA SHEET

CG51/CE51 SERIES 3V, 0.50 MICRON HIGH PERFORMANCE/LOW POWER CMOS GATE ARRAYS

DESCRIPTION

The Fujitsu CG51/CE51 is a series of ultra high performance CMOS gate arrays. The CG51 is a high density Sea-of-Gates array for applications requiring high levels of integration or low power. The CE51 is a high performance embedded gate array family offering full support of diffused high speed RAMS, ROMS and embedded megafunctions. The CE51 series offers density and performance approaching that achievable with standard cell solutions with the time-to-market advantage of a gate array.

True 3V products, the CG51/CE51 feature very low power (1.2 microwatt/Mhz) and both 3.3V and 5.0V compatible I/Os. These advanced product families are targeted at users who are seeking very high performance or very high levels of integration. Potential end-user applications include computers, supercomputers, workstations, graphic terminals, telecom networking, and signal processing.

FEATURES

- 0.5 Micron Drawn Channel Length
- Triple layer metal
- 3.3V ± 0.3V supply voltage
- Chanelless, Sea-of-gates Architecture
- Internal gate delay of 210ps, F/O = 2, L = 1mm
- · Low power consumption: 1.2 microwatt/gate/Mhz
- Maximum toggle frequency: 600Mhz
- High speed I/Os: PCML (PECL), LVTC
- Supports 3.3V and 5.0V I/O
- RAM compiler supports Single/Dual/Triple port RAM
- · Supports JTAG boundary scan, full and partial scan
- · Phase Locked Loop for interchip clock skew control
- · Clock net for optimized on-chip clock skew control
- Advanced packaging options include QFP, PGA, BGA, and MCM
- High drive capability: 2, 4, 8, 12, or 24mA
- Supports all major third party EDA tools including: Cadence, Mentor, Synopsys

Fujitsu Microelectronics, Inc.'s CE51654 647,000 Available Gate .5 Micron Embedded Array, Containing 28 Embedded Macro Cells

PRODUCT SUMMARY

Device Name	Available Gates	Number of Pads	Metal Wiring
CG51754	753,768	496	3LM
CG51654	647,948	456	3LM
CG51484	477,632	400	3LM
CG51364	363,084	352	3LM
CG51284	277,380	304	3LM
CG51214	214,760	272	3LM
CG51164	160,140	240	3LM
CG51114	113,520	208	3LM
CG51343	34,272	120	3LM

DC CHARACTERISTICS

Deremeter	Symbol	Test Canditions			Requirements				Unit
Parameter	Symbol		lest Conditions			Ту	р.	Max.	Unit
		Standby mode ¹		CG51343 to CG51214	-1.0	_	-	1.0	mA
Supply current ²	I _{DDS}			CG51284 to CG51484	-2.0	_	-	2.0	
				CG51654 to CG51754	-3.0	-	-	3.0	
		CMOS	Normal cell		$V_{DD} \times 0.7$	-	-	V _{DD}	v
High-level	VIH	level	Schmitt trigger cell		$V_{DD} \times 0.8$	-	-	V _{DD}	
input voltage		TTL level	Normal cell		2.2	-	-	V _{DD}	
Low-level input voltage ³	VIL	CMOS	Normal cell		V _{SS}	-	-	$V_{DD} \times 0.2$	V
		level	Schmitt trigger cell		V _{SS}	-	-	$V_{DD} \times 0.2$	
		TTL level Normal cell		V _{SS}	-	-	0.8		
High-level output voltage	V _{oH}	I _{OH} = -2, -4, -8, -12, -18			V _{DD} -0.4	-	-	V _{DD}	V
Low-level output voltage	V _{OL}	I _{OL} = 2, 4, 8, 12, 18		V _{SS}	C)	0.4	V	
Input leakage current	۱ _{LI}			 V		-	-	10	
(Tri-state pin input) ⁴	I _{LZ}				-10	-	-	10	μΑ
Input pull–up/ pull–down resistor ⁵	R _P	Pull-up V _I = V _{DDI} Pull-down V _I = 0V		20	5	0	140	kΩ	
Output Short-circuit current ⁶		Туре	Type Condition		$V_{O} = V_{DD}$			V _O = 0V	
		Output buffer	Low power I _{OL} = 2mA		-20		+20		- mA
	1.		Normal I _{OL} = 4mA		-40		+40		
	0		Power I _{OL} = 8mA		-80		+80		
			High power I _{OL} = 12mA		-120	-120		+120	
			Very high power I _{OL} = 24mA		-180	-180		+180	

Measuring conditions: $V_{DD} = 3.3V \pm 0.3V$, $V_{SS} = 0V$, $T_j = -0$ to $100^{\circ}C$

NOTES:

1. When V_{IH} = V_{DD} and V_{IL} = $V_{SS},$ memory is in the standby mode.

2. If an input buffer with pull-up/pull-down resistor is used, the supply current may not be assured depending on the circuit configuration.

3. 5V interface is only for CMOS level.

4. If an input buffer with pull-up/pull-down resistor is used, the input leakage current may exceed the above value.

5. Either a buffer without a resistor or with a pull-up/pull-down resistor can be selected from the input and bidirectional buffers.

6. Maximum supply current at the short–circuit of output and V_{DD} or V_{SS} .

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Requirements	Unit		
Supplyweltage	V _{DDE}	DE (External) V _{SS} [*] –0.5 to 6.0			
Supply voltage	V _{DDI}	(Internal) V _{SS} [*] –0.5 to 4.0	v		
Input voltage	VI	V _{SS} [*] -0.5 to V _{DD} +0.5		V	
Output voltage	Vo	V _{SS} [*] –0.5 to V _{DD} +0.5	V		
	-	Plastic –55 to +125	- °C		
Storage ambient temperature	IST	Ceramic –65 to +150			
Querchania comment		For one V _{DD} pin	90		
Supply pin current	I _D	For one V _{SS} pin	90] mA	
		Low power-type output buffer $I_{OL} = 2 \text{ mA}$	<u>+</u> 14		
		Normal-type output buffer I _{OL} = 4mA	<u>+</u> 14		
	la la	Power-type output buffer I _{OL} = 8mA	<u>+</u> 14		
	10	High-power type output buffer I _{OL} = 12mA	<u>+</u> 21		
		Very high-power type of output buffer $I_{OL} = 24mA$	<u>+</u> 58		

* V_{SS} = 0V

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Requirements			l lmit	
		Symbol	Min.	Тур.	Max.	Onit	
Supply voltage		V _{DDE}	3.0	3.3	3.6	v	
		V _{DDI}	3.0	3.3	4.6		
	CMOS level	Ň	$V_{DD} imes 0.7$	-	V _{DDI}	v	
High-level input voltage	TTL level	VIH	2.2	-	V _{DDI}		
	CMOS level	N/	V _{SS} *	-	$V_{\text{DDI}} \times 0.2$	v	
Low-level input voltage	TTL level	VIL	V _{SS} *	-	0.8		
Junction temperature		Tj	0	-	100	°C	

* V_{SS} = 0V

THIRD PARTY EDA TOOL SUPPORTED

Fujitsu supports a third party environment allowing an ASIC designer the widest possible range of design options. Both the CG51 gate array and CE51 embedded array product families are fully supported by Fujitsu's ASIC design kits, running on leading workstations and provides a seamless link from leading third party ASIC design flows to Fujitsu's

ASIC back end environment. These kits provide an easy environment for design entry, design rule checking. They also provide a complete pre- and post-layout timing back annotating capabilities. The following leading third party tools are supported.

Cadence:	Verilog-XL
Mentor:	Design Architect 8.2, Autologic I, QuickSim II
Motive:	Motive 4.2 (Static Timing Analyzer)
Sunrise Systems:	ATPG 2.1
Synopsys:	Design Analyzer 3.2a, VSS

PACKAGE OPTIONS

In addition to offering plastic and ceramic versions of industry standard packages such as PQFPs and PGAs, Fujitsu also offers an impressive array of advanced packaging technology. Our long experience with high speed logic and thermal management has led us to develop some of the most advanced packaging available anywhere. From cost effective, single chip packages to sophisticated multichip modules, Fujitsu has a packaging option to suit your requirements. Whether you need a 208 PQFP, the newest in high I/O count surface mounted Ball Grid Array (BGA) packages or full custom packaging we can deliver the optimal solution.

Packaging Option	ons								
	343	114	164	214	284	364	484	654	754
Quad Flat Packa	age (1.0, ().8, 0.65 mr	n pin pitch))					
100	Р								
120	Р								С
160		P,C	P,C	P,C	P,C	P,C	P,C	P,C	
Shrink Quad Fla	t Packag	e (0.5 mm	pin pitch)						
80	Р								
100	Р								
120	Р								
144		Р	Р	Р	Р				
176		P,C	P,C	P,C	P,C	P,C			
208		P,C	P,C	P,C	P,C	P,C	P,C	P,C	
240			P,C	P,C	P,C	P,C	P,C	P,C	
256				С	P,C	P,C	P,C	P,C	
304					C1	C1	С	С	С
Fine Pitch Flat F	Package (0.4 mm pin	pitch)						
304						С	С	С	С
Pin Grid Array F	Package								
256	-				С	С	С	С	С
299					С	С	С	С	С
321						С	С	С	С
361							С	С	С
401						С	С	С	С
Ball Grid Array	(BGA)								
256	. ,		Р	Р	Р				
352					Р	Р	Р		
416								P1	P1
576									P1

NOTES: 1 : Under Development

C: Ceramic Package

P: Plastic Package

FRONT-END DESIGN FLOW

CLOCK SKEW CONTROL

To maximize performance in high speed, high density arrays, a designer must maintain tight clock skew control. In addition to an available PLL to manage interchip clock skew, Fujitsu's clock driven design methodology (CDDM) offers accurate on chip clock skew control. CDDM offers accurate RC extraction of clock tree parameters, interactive clock tree implementation, simplifies trade-offs between clock tree delay and clock skew, early verification of potential design hold time errors and race conditions.

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

This document contains information on a new product. Specification and information herein are subject to change without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Electronic Devices International Sales and Engineering Support Division 1015, Kamikodanaka Nakahara-ku, Kawasaki 211, Japan Tel: (044) 754-3753 FAX: (044) 754-3332

North and South America

FUJITSU MICROELECTRONICS, INC. Logic Products Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: 408-922-9000 FAX: 408-432-9044

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10, 6072 Dreieich-Buchschlag, Germany Tel: (06103) 690-0 Telex: 411963 FAX: (06103) 690-122

Asia

FUJITSU MICROELECTRONICS ASIA PTE LIMITED 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 0719 Tel: 336-1600 Telex: 55573 FAX: 336-1609

Sales Offices

California

2880 Lakeside Drive, Suite 250 Santa Clara, CA 95054 (408) 982–1800

Century Center 2603 Main Street, #510 Irvine, CA 92714 (714) 724–8777

Colorado

12000 North Washington Street, #370 Thornton, CO 80241 (303) 254–9901

Georgia

3500 Parkway Lane, #210 Norcross, GA 30092 (404) 449–8539

Illinois

One Pierce Place, #1245 Itasca, IL 60143–2662 (708) 250–8580

Massachusetts

1000 Winter Street, #2500 Waltham, MA 02154 (617) 487–0029

Minnesota

3800 West 80th Street, #430 Bloomington, MN 55431–4419 (612) 893–5570

New York

898 Veterans Memorial Highway Building 2, Suite 310 Hauppauge, NY 11788 (516) 582–8700

Oregon

15220 N.W. Greenbrier Parkway, #360 Beaverton, OR 97006 (503) 690–1909

Texas

14785 Preston Rd., #274 Dallas, TX 75240 (214) 233–9394

20515 SH 249, Suite 485 Houston, TX 77070 (713) 379–3030