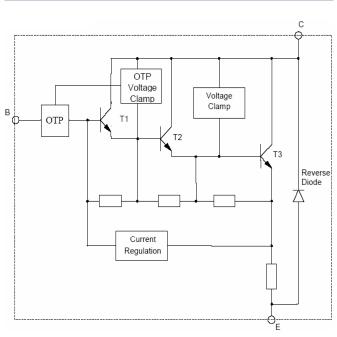

Automotive Electronics

Product Information Ignition Power Switch – BIP372

Customer benefits:

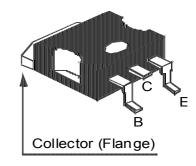
- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

Features


- Triple stage darlington designed for automotive ignition application
- Driven by standard CMOS logic with very low power consumption in the driving circuit
- Thermal shut down, sparkles
- Input protected against VBAT
- Internal CE voltage clamp, temperature compensated
- Collector current limiting circuit
- Low saturation voltage (< 2 V at 7 A in the entire temperature range)
- Integrated capacitors for oscillation free operation
- Package: D²PAK

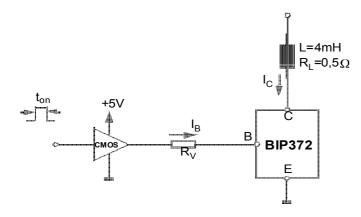
The bipolar triple stage darlington BIP372 especially developed to drive an ignition coil in automotive ignition circuits can be controlled by standard CMOS logic. The rugged bipolar process assures safe operation in automotive specific environment even under harsh conditions. The excellent quality of the concept - chip design and plastic packaging - has been proven in the field a million times. Due to the ESD performance, typical for HV- bipolar devices special precautions during manufacture or operation are unnecessary.

The BIP372 has an active voltage clamp between collector and emitter. It is temperature compensated with an accuracy of about ± 25 V in the entire temperature range. In order to protect the ECU, the wire harness, the coil and the ignition driver the collector current is limited to type. 11 A at long dwell times. Using a virtual sense concept a low saturation voltage of less than 2 V at 7 A in the entire temperature range has been obtained.


In order to prevent overheating and thermal damage of the device in case of excessive long dwell times the power stage is switched off internally by the integrated "Over temperature Protection" circuit (OTP) when reaching critical junction temperature. Suppressing spark ignition the primary voltage is clamped on low level when thermal shut down occurs.

The BIP372 with all the built-in protection circuits is suitable for high performance and high operation temperature automotive applications.

Block diagram


PIN configuration

Maximum ratings

Parameter	Symb.	Value	Unit	
Collector emitter breakdown voltage	VCE	250	V	
Collector base breakdown voltage	Vсв	250	V	
Collector current (sine half wave tp= 40us, f= 100Hz)	lc	15	А	
Reverse diode forward current t=300s, T _{case} = 25°C	lec	10	А	
Input voltage Tcase < 40°C, t < 60s, no function	VBE	13.5	V	
Input current, no function	Ів	-100 200	mA	
Input signal rise time	dV _{BE} / dt	0.2	V/ns	
Inductive load switching avalanche energy (L= 4 mH, Ic= 15A	Eoff	450	mJ	
Operating and storage junction temperature range	Tj	-40 150	°C	
Battery voltage	Vbat	616	V	

Application example

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcı	Collector emitter clamping voltage	at Ic= 6A7.3A, L= 4mH, VBE_off < 0.7V, measured 25µs after VcE= 200V	350	375	400	V
VCIPeak	Collector emitter clamping voltage peak	at Ic= 6A7.3A, L= 4mH, V _{BE_off} < 0.7V			450	V
lcon	Collector current limitation	Vce= 6V10V;	8.5	11	14.5	A
		Vce= 6V10V; Tj < 125°C	9.0		14.5	
		Vce= 4V	8.0		14.5	
Icoff	Leak current	VBE= 0V, VCE= 250V			15	mA
Icoffa	Leak current by active Input	$V_{BE} \leq 0.5V; V_{CE} \leq 20V$			15	mA
		IB= 10uA; Vce ≤2 0V			15	
Vce_rev	Reverse polarity collector emitter voltage	Ic= -5A	-1.3	-1.0		V
VBE_REV	Reverse polarity base emitter voltage	Ic= -5A	-1.2			V
Vce_sat	Collector emitter saturation voltage	Ic= 7 A, Tj= 25°C		1.7		V
		Ic= 7 A	1.4		2.0	
		Ic= 7.6 A			2.3	
		Ic= 8 A; Tj <= 125°C			2.3	
Ів	Input current		5.0	7.0	12.0	mA
VBE_CI		Base Emitter Voltage in the clamping/off-state			0.5	V
VBE_SAT	Base emitter saturation voltage	Iс= 7А, Iв = 5mA	2.55		3.75	V
		Ic= 7A, IB = 12mA	3.35		4.35	
toff	Switching time	Ic= 7A, Trigger: Vc=200V, to at ½ IB			40	us
Тотр	Thermal shut down	Active heating: TOTP= TJunction	180	195	210	°C
Icoff_OTP	Leak current after OTP	$V_{\text{BV}\text{=}}$ 5V, Rv= 82 Ω , V_{bat}= 14V, L= 4mH, 1ms after V_{CE} < 15V			25	mA
VBE_OTP	VBE after OTP	V _{BV} = 5V, R _V = 82Ω	4.55		4.85	V
Vcl_otp	OTP collector emitter clamping voltage	Thermal shut down	25		44	V
Bmin_OTP	Input current OTP	Minimal input current for the function OTP	2		5	mA
Rthj-case	Thermal resistance				1.3	K/W

Unless otherwise specified: VBat = 6V...16V, IB= 5mA...12mA, TJunction = -40°C....+150°C

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170 Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA Tel.: +1 248 876-7441 Fax: +1 248 848-2818 Robert Bosch K.K. Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 Japan Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

E-Mail: bosch.semiconductors@de.bosch.com

Internet: www.bosch-semiconductors.de

© 03/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution. For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.