

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

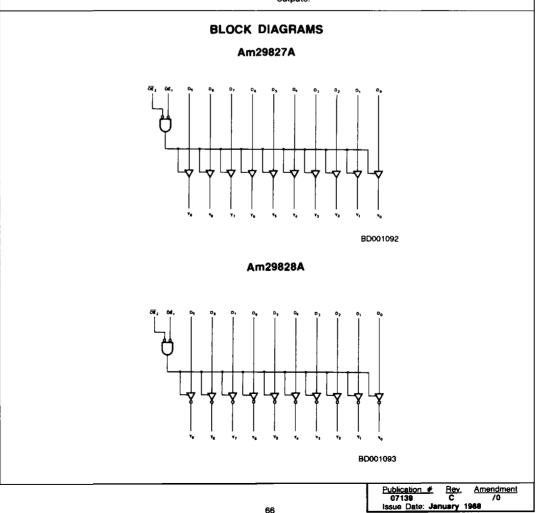
• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

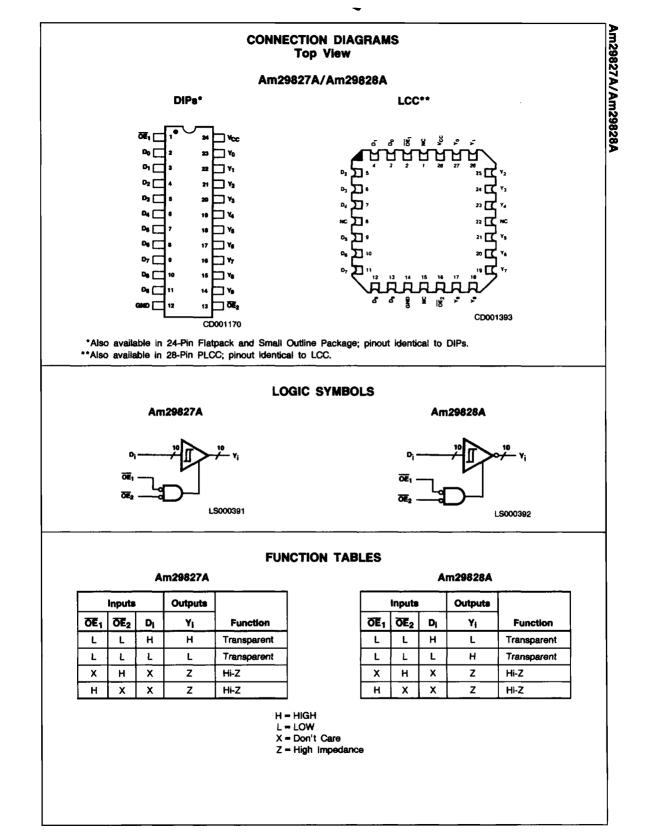
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

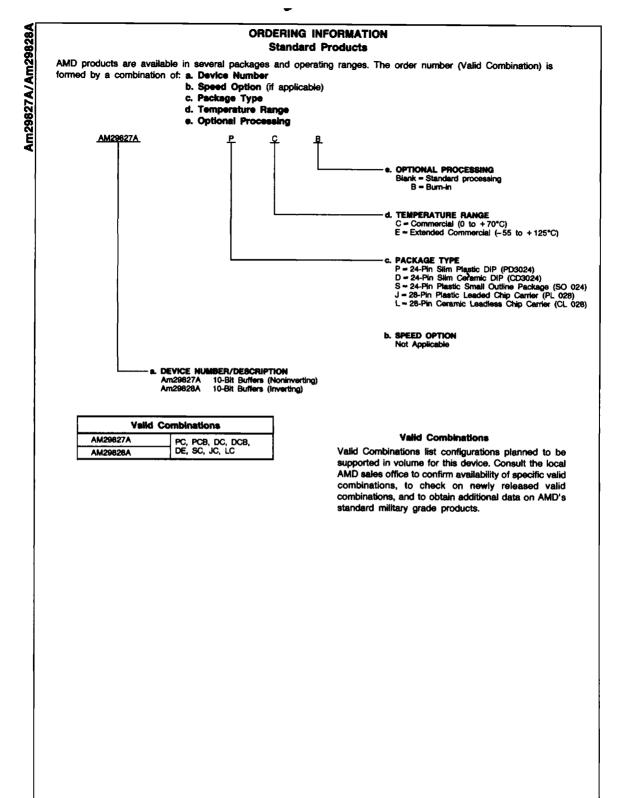
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

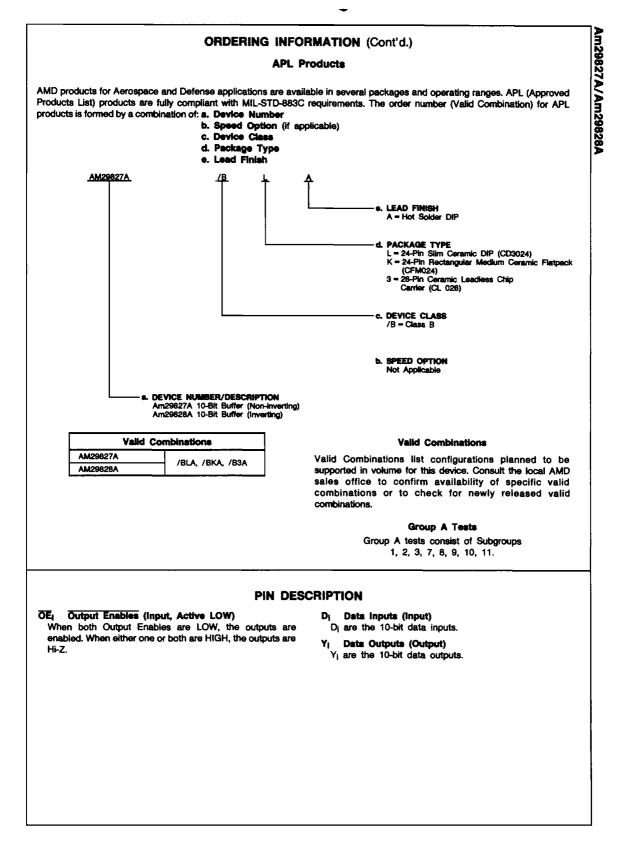
Am29827A/Am29828A

High-Performance Buffers


DISTINCTIVE CHARACTERISTICS


- High-speed buffers and inverters
 tpD = 5.0 ns Typical
- · 200-mV minimum input hysteresis on input data ports
- Three-state outputs glitch-free during power-up and power-down
- IOL: 48 mA Commercial, 32 mA Military
- Higher speed, lower power versions of the Am29827/Am29828


GENERAL DESCRIPTION


The Am29827A and Am29828A Bus Buffers provide highperformance bus interface buffering for wide address/data paths or buses carrying parity. Both devices feature a 10-bit wide data path and NORed output enables for maximum control flexibility. The Am29827A has non-inverting outputs, while the Am29828A has inverting outputs. Each device features data inputs with 200-mV minimum input hysteresis to provide improved noise immunity. The Am29827A and Am29828A are produced with AMD's proprietary IMOX* bipolar process, and feature typical propagation delays of 5 ns. Package options include DIPs, PLCCs, LCCs, SOICs, and Flatpacks.

Each member of the Am29800A/Am29900A Bus Interface Family is designed to drive high-capacitive loads while providing low-capacitive bus loading at both inputs and outputs.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Ambient Temperature with
Power Applied
Supply Voltage to Ground Potential
Continuous0.5 V to +7.0 V
DC Voltage Applied to Outputs
for High Output State0.5 V to +5.5 V
DC Input Voltage1.5 V to +6.0 V
Output Current, into Outputs 100 mA
DC Input Current30 mA to +5.0 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature (T _A)0 to +70°C
Supply Voltage (V _{CC}) +4.5 V to +5.5 V

Military (M) and Extended Commercial (E) Devices	
Temperature (T _C)55 to +125°C	
Supply Voltage (V _{CC}) +4.5 V to +5.5 V	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol				Min.	Max.	Units	
		Vcc = 4.5 V	I _{OH} = -15 mA	2.4			
V _{OH}	Output HIGH Voltage	VIN = VIH or VIL	IOH = -24 mA	2.0		1 Y	
		V _{CC} = 4.5 V	MiL, I _{OL} = 32 mA		0.5		
VOL Output LOW Volt	Output LOW Voltage	VIN = VIH or VIL	COM'L, I _{OL} = 48 mA		0.5	L *	
VIH	Input HIGH Voltage	Guaranteed Input Logical for All Inputs (Note 1)	HIGH Voltage	2.0		v	
V _{IL} In		Guaranteed Input	COM'L		0.8		
	Input LOW Voltage	Logical LOW Voltage for All Inputs (Note 1)	MIL		0.7	l v	
V _I	Input Clamp Voltage	V _{CC} = 4.5 V, 1 _{IN} = -18 m	A		~1.2	v	
VHYST	Input Hysteresis			200	1	mV	
հլ	Input LOW Current	V _{CC} = 5.5 V, V _{IN} = 0.4 V			-0.5	mA	
Чн	Input HIGH Current	V _{CC} = 5.5 V, V _{IN} = 2.7 V			50	μA	
li	Input HIGH Current	VCC = 5.5 V, VIN = 5.5 V			100	μA	
Югн	Output Off-State Current	V _{CC} = 5.5 V, V ₀ = 2.7 V			50	μA	
lozl	(High Impedance)	$V_{CC} = 5.5 V, V_0 = 0.4 V$			- 50	μA	
Isc	Output Short-Circuit Current	V _{CC} = 5.5 V, V _{OUT} = 0 V (Note 2)		- 75	- 250	mA	
OFF	Bus Leakage Current	V _{CC} = 0 V, V _{OUT} = 2.9 V			100	μA	
Icc			Outputs LOW		80		
	Supply Current	V _{CC} = 5.5 V	Outputs HIGH		55	mA	
		Outputs Unloaded	Outputs Hi-Z		70	1	

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters.

2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second.

Am29827A/Am29828A

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		
			Min.	Max.	Min.	Max.	Units
1PLH	Data (Di) to Output (Yi) Am29827A (Noninverting)			8		9	ns
1PHL				8		9	ns
ЧРL H	Data (Dj) to Output (Yj) Am29828A (Inverting)			7		8	ns
1PHL		CL = 50 pF		9		10	ns
tzн	Output Enable Time OE to Yi	$\begin{array}{c} C_{L} = 50 \text{ pF} \\ R_{1} = 500 \Omega \\ R_{2} = 500 \Omega \end{array}$		11		12	ns
tzL				12		13	ns
чнz	Output Disable Time OE to Yi			10		10	ns
٩z				10		10	ns

*See Test Circuit and Waveforms.