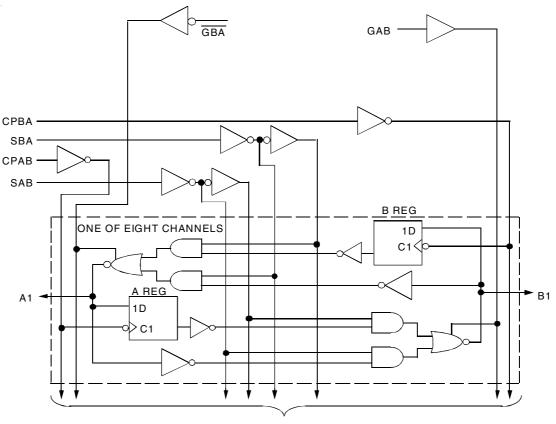


FAST CMOS OCTAL TRANSCEIVER/ REGISTER (3-STATE) IDT74FCT652AT/CT

FEATURES:

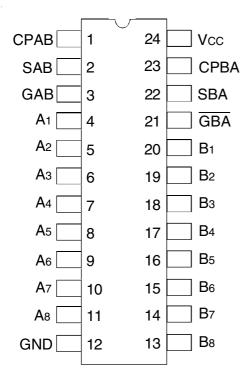
- A and C grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - Voн = 3.3V (typ.)
 - VoL = 0.3V (typ.)
- High Drive outputs (-15mA IOH, 64mA IOL)
- Meets or exceeds JEDEC standard 18 specifications
- · Power off disable outputs permit "live insertion"
- Available in SOIC, SSOP, and QSOP packages


DESCRIPTION:

The FCT652T consists of a bus transceiver with 3-state D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The FCT652T utilizes GAB and GBA signals to control the transceiver functions.

SAB and SBA control pins are provided to select either real-time or stored data transfer. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input level selects real-time data and a high selects stored data.

Data on the A or B data bus, or both, can be stored in the internal D flipflops by low-to-high transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins.


TO SEVEN OTHER CHANNELS

The IDT logo is aregistered trademark of Integrated Device Technology, Inc.
INDUSTRIAL TEMPERATURE RANGE

IDT74FCT652AT/CT

FASTCMOSOCTAL TRANSCEIVER/REGISTER(3-STATE)

PIN CONFIGURATION

SOIC/ SSOP/ QSOP TOP VIEW

INDUSTRIALTEMPERATURERANGE

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit	
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +7	V	
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	minal Voltage with Respect to GND -0.5 to Vcc+0.5		
Tstg	Storage Temperature	–65 to +150	°C	
Ιουτ	DC Output Current	–60 to +120	mA	

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.

2. Inputs and Vcc terminals only.

3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description	
A1 - A8	Data Register A Inputs	
	Data Register B Outputs	
B1 - B8	Data Register B Inputs	
	Data Register A Outputs	
CPAB, CPBA	Clock Pulse Inputs	
SAB, SBA	Output Data Source Select Inputs	
GAB, GBA	Output Enable Inputs	

INDUSTRIALTEMPERATURERANGE

FUNCTION TABLE⁽¹⁾

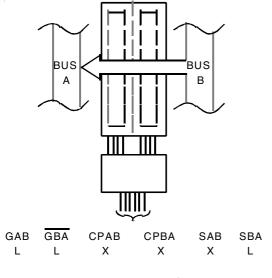
		Inp	uts			Dat	ta I/O	
GAB	GBA	CPAB	СРВА	SAB	SBA	A1 - A8	B1 - B8	Operation or Function
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	L	\uparrow	\uparrow	Х	Х			Store A and B Data
Х	Н	\uparrow	H or L	Х	Х	Input	Unspecified ⁽²⁾	Store A, Hold B
н	н	\uparrow	\uparrow	Х	Х	Input	Output	Store A in Both Registers
L	Х	H or L	\uparrow	Х	Х	Unspecified ⁽²⁾	Input	Hold A, Store B
L	L	\uparrow	\uparrow	Х	Х	Output	Input	Store B in Both Registers
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus
L	L	Х	H or L	Х	н			Stored B Data to A Bus
Н	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus
н	н	H or L	Х	н	Х			Stored A Data to B Bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

NOTES:

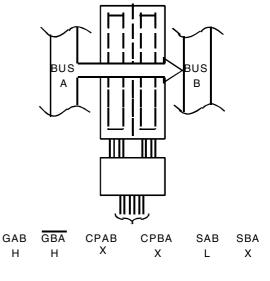
1. H = HIGH

L = LOW

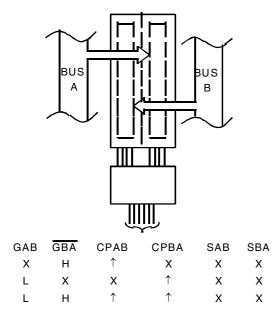
X = Don't Care


 \uparrow = LOW-to-HIGH transition.

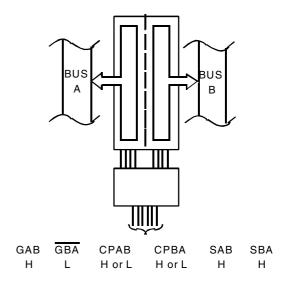
Select control = L: clocks can occur simultaneously.


Select control = H: clocks must be staggered in order to load both registers.

2. The data output functions may be enabled or disabled by various signals at the GAB or GBA inputs. Data input functions are always enabled, i.e. data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.


IDT74FCT652AT/CT FASTCMOSOCTALTRANSCEIVER/REGISTER(3-STATE)

Real-Time Transfer Bus B to A



Real-Time Transfer Bus A to B

Storage From

A and/or B

Transfer Stores Data to A and/or B

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

 $\label{eq:conditions} Following \, Conditions \, Apply \, Unless \, Otherwise \, Specified:$

Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = 5.0V $\pm 5\%$

Symbol	Parameter	Tes	t Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH L	.evel	2	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Le	evel	-	—	0.8	V
lн	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V		_	±1	μA
lil	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V		—	±1	μA
lozн	High Impedance Output Current	Vcc = Max	Vo = 2.7V		—	±1	μA
lozl	(3-State output pins) ⁽⁴⁾	Vo = 0.5V		-	—	±1	
lı	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (M	Vcc = Max., VI = Vcc (Max.)		—	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min, IIN = -18mA		—	-0.7	-1.2	V
Vн	Input Hysteresis	_		-	200	-	mV
Icc	Quiescent Power Supply Current	Vcc = Max., VIN = GND o	or Vcc	-	0.01	1	μΑ

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	Iон = –8mA	2.4	3.3	_	V
		VIN = VIH or VIL	Іон = –15mA	2	3	_	
Vol	Output LOW Voltage	Vcc = Min	IoL = 64mA	_	0.3	0.55	V
		VIN = VIH or VIL					
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-60	-120	-225	mA
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, VIN or Vo $\leq 4.5V$		_	—	±1	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu$ A at TA = -55°C.

5. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. VIN = $3.4V^{(3)}$		-	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open GAB = GBA = GND One Input Toggling 50% Duty Cycle	Vin = Vcc Vin = GND	_	0.15	0.25	mA/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcp = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND	_	1.5	3.5	mA
		GAB = GBA = GND One Bit Toggling at fi = 5MHz	VIN = 3.4V VIN = GND	-	2	5.5	
		Vcc = Max. Outputs Open fcp = 10MHz	VIN = VCC VIN = GND	-	3.8	7.3(5)	
		50% Duty Cycle GAB = GBA = GND Eight Bits Toggling at fi = 2.5MHz	VIN = 3.4V VIN = GND		6	16.3(5)	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of Δlcc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

- IC = ICC + Δ ICC DHNT + ICCD (fCP/2+ fiNi)
- Icc = Quiescent Current

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Output Frequency

Ni = Number of Outputs at fi

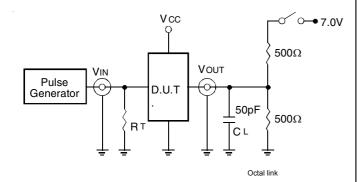
All currents are in milliamps and all frequencies are in megahertz.

IDT74FCT652AT/CT FASTCMOSOCTAL TRANSCEIVER/REGISTER (3-STATE)

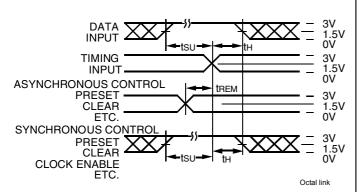
INDUSTRIALTEMPERATURERANGE

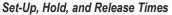
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

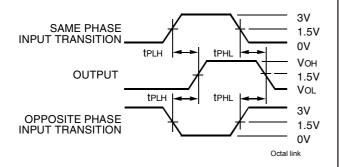
			FCT652AT		FCT6	52CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH .	Propagation Delay	CL = 50pF	2	6.3	1.5	5.4	ns
t PHL	Bus to Bus	RL = 500Ω					
tPZH	Output Enable Time,		2	9.8	1.5	7.8	ns
tPZL	GAB, GBA to Bus						
tPHZ	Output Disable Time,		2	6.3	1.5	6.3	ns
tPLZ	GAB, GBA to Bu						
tPLH .	Propagation Delay	7	2	6.3	1.5	5.7	ns
t PHL	Clock to Bus						
tPLH .	Propagation Delay		2	7.7	1.5	6.2	ns
t PHL	SBA or SAB to Bus						
ts∪	Set-up Time HIGH or LOW, Bus to Clock		2	_	2	_	ns
tH	Hold Time HIGH or LOW, Bus to Clock		1.5	_	1.5	_	ns
tw	Clock Pulse Width, HIGH or LOW ⁽³⁾		5	-	5	_	ns


NOTES:

1. See test circuit and waveforms.

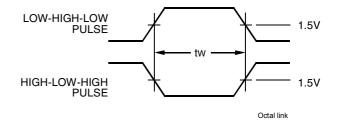

Minimum limits are guaranteed but not tested on Propagation Delays.
 This parameter is guaranteed but not tested.


IDT74FCT652AT/CT FAST CMOS OCTAL TRANSCEIVER/REGISTER (3-STATE)

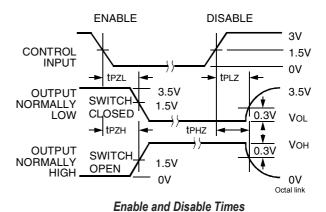

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Propagation Delay


SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

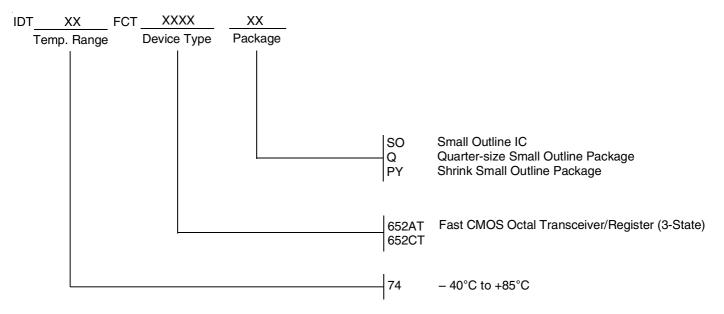

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width

NOTES:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

IDT74FCT652AT/CT FASTCMOSOCTALTRANSCEIVER/REGISTER(3-STATE)

INDUSTRIALTEMPERATURERANGE

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459