💫 National Semiconductor

March 1996

74LVXC4245 8-Bit Dual Supply Configurable Voltage Interface Transceiver with TRI-STATE®Outputs

General Description

The LVXC4245 is a 24-pin dual-supply, 8-bit configurable voltage interface transceiver suited for PCMCIA and other real time configurable I/O applications. The V_{CCA} pin accepts a 5V supply level. The "A" port is a dedicated 5V port. The V_{CCB}pin accepts a 3V-to-5V supply level. The "B" port is configured to track the V_{CCB} supply level respectively. A 5V level on the V_{CC} pin will configure the I/O pins at a 5V level and a 3V V_{CC} will configure the I/O pins at a 3V level. This device will allow the V_{CCB} voltage source pin and I/O pins on the "B" port to float when \overline{OE} is HIGH. This feature is necessary to buffer data to and from a PCMCIA socket that permits PCMCIA cards to be inserted and removed during normal operation.

Features

- Bidirectional interface between 5V and 3V-to-5V buses
- Control inputs compatible with TTL level
- Outputs source/sink up to 24 mA
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Available in SOIC, QSOP and TSSOP packages
- Implements patented Quiet Series[™] EMI reduction
 - circuitry
- Flexible V_{CCB} operating range
- \blacksquare Allows B port and $V_{\rm CCB}$ to float simultaneously when $\overline{\rm OE}$ is HIGH

Pin Assignment for SOIC, QSOP and TSSOP

> V_{CCB} 24

> > - OE

• B₂

- B5

23 - NC

22 21 - В_О

20 B

19 18 • B3

17 • B₄

15 - B₆

12 • B₇

13 - GND

■ Functionally compatible with the 74 series 245

Connection Diagram

VCCA T/\overline{R} -

A₀

A₁

A2 -

Α3

Α4

A₅

A₆ 10

A-7 GND · 11

GND 12

Logic Symbol

Pin Names	Description
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or TRI-STATE Outputs
B ₀ -B ₇	Side B Inputs or TRI-STATE Outputs

	SOIC JEDEC	QSOP	TSSOP
Order Number	74LVXC4245WM	74LVXC4245QSC	74LVXC4245MTC
	74LVXC4245WMX	74LVXC4245QSCX	74LVXC4245MTCX
See NS Package Number	M24B	MQA24	MTC24

TRI-STATE[®] is a registered trademark of National Semiconductor Quiet Series[™] is a trademark of National Semiconductor Corpora

© 1997 National Semiconductor Corporation DS012009

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CCA} ,V _{CCB})	-0.5V to +7.0V
DC Input Voltage (VI) @ OE, T/R	-0.5V to V _{CCA} +0.5V
DC Input/Output Voltage (VI/O)	
@ A _n	-0.5V to V _{CCA} +0.5V
@ B _n	-0.5V to V _{CCB} +0.5V
DC In <u>put</u> Di <u>o</u> de Current (I _{ικ}) @ OE, T/R	±20 mA
DC Output Diode Current (I _{OK})	±50 mA
DC Output Source or Sink Current (I _O)	±50 mA
DC V_{CC} or Ground Current	
Per Output Pin (I _{CC} or I _{GND})	±50 mA
and Max Current	±200 mA
Storage Temperature Range (T _{STG})	−65°C to +150°C

DC Latch-Up Source or Sink Current

Recommended Operating Conditions

Supply Voltage V_{CCA} 4.5V to 5.5V 2.7V to 5.5V $V_{\rm CCB}$ Input Voltage (VI) @ $\overline{\text{OE}}$, $\text{T}/\overline{\text{R}}$ 0V to $V_{\rm CCA}$ Input/Output Voltage (V $_{\rm I/O}$) 0V to $V_{\rm CCA}$ @A_n 0V to V_{CCB} @Bn Free Air Operating Temperature (T_A) -40°C to +85°C Minimum Input Edge Rate ($\Delta V / \Delta t$) 8 ns/V $V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}$ V_{CC} @ 3V, 4.5V, 5.5V

±300 mA

DC Electrical Characteristics

Symbol	Parameter		V_{CCA}	V _{CCB}		74	LVXC4245	Units	Conditions
			(V)	(V)	T _A =	+25°C	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		
					Тур	G	uaranteed Limits		
V _{IHA}	Minimum High Level	A _n	4.5	2.7		2.0	2.0	V	$V_{OUT} \le 0.1V$
	Input Voltage	ŌĒ	4.5	3.6		2.0	2.0		or
		T/R	5.5	5.5		2.0	2.0		$\geq V_{CC}$ - 0.1V
V _{IHB}		B _n	4.5	2.7		2.0	2.0		
			4.5	3.6		2.0	2.0		
			4.5	5.5		3.85	3.85		
V _{ILA}	Maximum Low Level	A _n	4.5	2.7		0.8	0.8	V	$V_{OUT} \le 0.1V$
	Input Voltage	ŌĒ	4.5	3.6		0.8	0.8		or
		T/R	5.5	5.5		0.8	0.8		$\geq V_{CC}$ - 0.1V
V _{ILB}		B _n	4.5	2.7		0.8	0.8		
			4.5	3.6		0.8	0.8		
			4.5	5.5		1.65	1.65		
V _{oha}	Minimum High Leve		4.5	3.0	4.49	4.4	4.4	V	I _{OUT} = -100 μA
	Output Voltage		4.5	3.0	4.25	3.86	3.76		I _{OH} = −24 mA
V _{онв}			4.5	3.0	2.99	2.9	2.9	V	I _{OUT} = -100 μA
			4.5	3.0	2.85	2.56	2.46		I _{OH} = −12 mA
			4.5	3.0	2.65	2.35	2.25		I _{OH} = −24 mA
			4.5	2.7	2.5	2.3	2.2		I _{OH} = −12 mA
			4.5	2.7	2.3	2.1	2.0		I _{OH} = −24 mA
			4.5	4.5	4.25	3.86	3.76		I _{OH} = −24 mA
V _{OLA}	Maximum Low Leve	el .	4.5	3.0	0.002	0.1	0.1	V	I _{OUT} = 100 μA
	Output Voltage		4.5	3.0	0.21	0.36	0.44		I _{OL} = 24 mA
V _{OLB}			4.5	3.0	0.002	0.1	0.1	V	I _{OUT} = 100 μA
			4.5	3.0	0.21	0.36	0.44		I _{OL} = 24 mA
			4.5	2.7	0.11	0.36	0.44		I _{OL} = 12 mA
			4.5	2.7	0.22	0.42	0.5		I _{OL} = 24 mA
			4.5	4.5	0.18	0.36	0.44		I _{OL} = 24 mA

Symbol	Parameter		V_{CCA}	V _{ссв}	74LVXC4245				Conditions
			(V)	(V)	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C				
					Тур	G	uaranteed Limits		
I _{IN}	Maximum Input								V _I = V _{CCA} , GND
	Leakage Current	@	5.5	3.6		±0.1	±1.0	μA	
	OE, T/R		5.5	5.5		±0.1	±1.0		
I _{oza}	Maximum TRI-ST	ATE	5.5	3.6		±0.5	±5.0	μA	$V_{I} = V_{IL}, V_{IH}, \overline{OE}$
	Output Leakage	◎ A _n	5.5	5.5		±0.5	±5.0		$V_{O} = V_{CCA}$, GND
оzв	Maximum TRI-ST	ATE	5.5	3.6		±0.5	±5.0	μΑ	$V_{I} = V_{IL}, V_{IH}, \overline{OE}$ V_{CCA}
	Output Leakage	◎ B _n	5.5	5.5		±0.5	±5.0		$V_{O} = V_{CCB}$, GND
Δl _{cc}	Maximum	All Inputs	5.5	5.5	1.0	1.35	1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	B _n	5.5	3.6		0.35	0.5	mA	$V_{I} = V_{CCB} - 0.6V$
I _{CCA1}	Quiescent V _{CCA}								A _n = V _{CCA} or GNI
	Supply Current as	зB	5.5	Open		8	80	μA	B_n = Open, \overline{OE} = V_{CCA}
	Port Floats								$T/\overline{R} = V_{CCA}, V_{CCE}$ Open
CCA2	Quiescent V_{CCA}								$A_n = V_{CCA}$ or GNI
	Supply Current		5.5	3.6		8	80	μA	$B_n = V_{CCB}$ or GNI
			5.5	5.5		8	80		\overline{OE} = GND, T/ \overline{R} = GND
ССВ	Quiescent V _{CCB}								$A_n = V_{CCA}$ or GNE
	Supply Current		5.5	3.6		5	50	μA	$B_n = V_{CCB}$ or GNE
			5.5	5.5		8	80		\overline{OE} = GND, T/ \overline{R} = V_{CCA}
V _{olpa}	Quiet Output		5.0	3.3		1.5		V	(Note 2) (Note 3)
	Maximum Dynam	ic	5.0	5.0		1.5			
V _{OLPB}	V _{OL}		5.0 5.0	3.3 5.0		0.8 1.5		V	(Note 2) (Note 3)
	Quiet Output Mini	imum	5.0	3.3		-1.2		V	(Note 2) (Note 3)
OLVA	Dynamic V _{OL}		5.0	5.0		-1.2			
	, s ol		5.0	3.3		-0.8		V	(Note 2) (Note 3)
JLVD			5.0	5.0		-1.2			
/ _{IHDA}	Minimum High Le	vel	5.0	3.3		2.0		V	(Note 2) (Note 4)
	Dynamic Input		5.0	5.0		2.0			
/ _{IHDB}	Voltage	5.0	3.3		2.0		V	(Note 2) (Note 4)	
	-		5.0	5.0		3.5			
	Maximum Low Level		5.0	3.3		0.8		V	(Note 2) (Note 4)
,	Dynamic Input		5.0	5.0		0.8			
V _{II DB}	Voltage		5.0	3.3		0.8		V	(Note 2) (Note 4)
	, s		5.0	5.0		15			

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Worst case package.

Note 3: Max number of outputs defined as (n). Data inputs are driven 0V to V_{CC} level; one output at GND.

Note 4: Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to V_{CC} level. Input-under-test switching: V_{CC} level to threshold (V_{IHD}), 0V to threshold (V_{ILD}), f = 1 MHz.

www.national.com

Г

Symbol	Parameter	74LVXC4245						74LVXC4245					
		C _L = 50 pF						CL	= 50 pF				
		V _{CCA} = 4.5V to 5.5V					V _{CCA} =	4.5V to 5	5.5V				
			V _{CCB} =	4.5V to	5.5V			V _{CCB} =	2.7V to 3	8.6V			
		T _A = +25°C			T _A = - +8	T _A = -40°C to +85°C		T _A = +25°C			T _A = -40°C to +85°C		
		Min	Тур	Мах	Min	Мах	Min	Тур	Max	Min	Мах		
			(Note 2)					(Note 3)					
t _{PHL}	Propagation	1.0	4.9	6.5	1.0	7.0	1.0	5.5	7.5	1.0	8.0	ns	
t _{PLH}	Delay A to B	1.0	4.0	5.5	1.0	6.0	1.0	5.0	7.0	1.0	7.5		
t _{PHL}	Propagation	1.0	4.7	6.5	1.0	7.0	1.0	5.6	7.5	1.0	8.0	ns	
t _{PLH}	Delay B to A	1.0	3.9	5.0	1.0	5.5	1.0	4.3	6.0	1.0	6.5		
t _{PZL}	Output Enable	1.0	5.6	7.5	1.0	8.0	1.0	6.7	9.0	1.0	10.0	ns	
t _{PZH}	Time OE to B	1.0	5.7	7.5	1.0	8.0	1.0	6.9	9.5	1.0	10.0		
t _{PZL}	Output Enable	1.0	7.4	9.0	1.0	10.0	1.0	8.0	10.0	1.0	11.0	ns	
t _{PZH}	Time OE to A	1.0	6.1	7.5	1.0	8.5	1.0	6.3	8.0	1.0	8.5		
t _{PHZ}	Output Disable	1.0	4.8	7.0	1.0	7.5	1.0	6.0	9.0	1.0	9.5	ns	
t _{PLZ}	Time OE to B	1.0	3.8	5.5	1.0	6.0	1.0	4.2	6.5	1.0	7.0		
t _{PHZ}	Output Disable	1.0	3.4	5.5	1.0	6.0	1.0	3.4	5.5	1.0	6.0	ns	
t _{PLZ}	Time OE to A	1.0	2.9	4.5	1.0	5.0	1.0	2.9	5.0	1.0	5.5		
t _{OSHL}	Output to Output												
t _{OSLH}	Skew (Note 4)		1.0	1.5		1.5		1.0	1.5		1.5	ns	
	Data to Output												

Note 5: Typical values at $V_{CCA} = 5V$, $V_{CCB} = 5V$ @25°C. Note 6: Typical values at $V_{CCA} = 5V$, $V_{CCB} = 3.3V$ @25°C.

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Г

Symbol	Parameter		Тур	Units	Conditions
CIN	Input Capacitance		4.5	pF	V _{CC} = Open
C _{I/O}	Input/Output Capacitance		10	pF	V_{CCA} = 5V, V_{CCB} = 3.3V
C _{PD}	Power Dissipation Capacitance	A→B	45	pF	V _{CCA} = 5V
		50	pF	V _{CCB} = 3.3V	

Note 8: C_{PD} is measured at 10 MHz.

The LVXC4245 is a 24-pin dual supply device well suited for PCMCIA configurable I/O applications. Ideal for low power notebook designs, the LVXC4245 consumes less than 1 mW of quiescent power in all modes of operation. The LVXC4245 meets all PCMCIA I/O voltage requirements at 5V and 3.3V operation. By tying V_{CCB} of the LVXC4245 to the card voltage supply, the PCMCIA card will always experience rail to rail output swings, maximizing the reliability of the interface.

The V_{CCA} pin on the LVXC4245 must always be tied to a 5V power supply. This voltage connection provides internal references needed to account for variations in V_{CCB}. When connected as in the block diagram above, the LVXC4245 meets all the voltage and current requirements of the ISA bus standard (IEEE P996).

74LVXC4245 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

7

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or sys-tems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be rea-sonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
\mathbf{V}^{*}	Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Tsimshatsui, Kowloon	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Hong Kong	
		Français Tel: +49 (0) 1 80-532 93 58	Tel: (852) 2737-1600	
www.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80	Fax: (852) 2736-9960	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications