INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT14Hex inverting Schmitt trigger

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT14

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT14 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT14 provide six inverting buffers with Schmitt-trigger action. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYF	UNIT		
STWIBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	12	17	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	7	8	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

2. For HC the condition is V_1 = GND to V_{CC} For HCT the condition is V_1 = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT14

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A to 6A	data inputs
2, 4, 6, 8, 10, 12	1Y to 6Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

FUNCTION TABLE

INPUT	OUTPUT				
nA	nY				
L	Н				
Н	L				

Notes

H = HIGH voltage level
 L = LOW voltage level

APPLICATIONS

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

Philips Semiconductors Product specification

Hex inverting Schmitt trigger

74HC/HCT14

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Transfer characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	DADAMETED				74HC						
	PARAMETER		+25		-40	to +85	-40 t	o +125	UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
V _T +	positive-going	0.7	1.18	1.5	0.7	1.5	0.7	1.5	V	2.0	Figs 6 and 7
	threshold	1.7 2.1	2.38 3.14	3.15 4.2	1.7 2.1	3.15 4.2	1.7 2.1	3.15 4.2		4.5 6.0	
V _T -	negative-going threshold	0.3 0.9 1.2	0.52 1.40 1.89	0.90 2.00 2.60	0.3 0.90 1.20	0.90 2.00 2.60	0.30 0.90 1.2	0.90 2.00 2.60	V	2.0 4.5 6.0	Figs 6 and 7
V _H	hysteresis (V _T + - V _T -)	0.2 0.4 0.6	0.66 0.98 1.25	1.0 1.4 1.6	0.2 0.4 0.6	1.0 1.4 1.6	0.2 0.4 0.6	1.0 1.4 1.6	V	2.0 4.5 6.0	Figs 6 and 7

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL				•	T _{amb} (°	C)			UNIT	TEST CONDITIONS	
	PARAMETER				74HC	;					
	PARAWETER		+25		-40	to +85	−40 t	o +125	UNII	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay		41	125		155		190	ns	2.0	Fig.8
	nA to nY		15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition		19	75		95		110	ns	2.0	Fig.8
	time		7	15		19		22		4.5	
			6	13		15		19		6.0	

Philips Semiconductors Product specification

Hex inverting Schmitt trigger

74HC/HCT14

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA	0.3

Transfer characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER		74HCT								
	PARAMETER		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(*)	
V _T +	positive-going threshold	1.2 1.4	1.41 1.59	1.9 2.1	1.2 1.4	1.9 2.1	1.2 1.4	1.9 2.1	V	4.5 5.5	Figs 6 and 7
V _T -	negative-going threshold	0.5 0.6	0.85 0.99	1.2 1.4	0.5 0.6	1.2 1.4	0.5 0.6	1.2 1.4	V	4.5 5.5	Figs 6 and 7
V _H	hysteresis (V _T + –V _T –)	0.4 0.4	0.56 0.60		0.4 0.4		0.4 0.4	_	V	4.5 5.5	Figs 6 and 7

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL				•	T _{amb} (°	C)				TEST CONDITIONS		
	PARAMETER				74HC	Т			LINUT		V _{CC} (V) WAVEFORMS	
	PARAWETER		+25		-40	to +85	−40 t	o +125	UNIT			
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay nA, to nY		20	34		43		51	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.8	

74HC/HCT14

TRANSFER CHARACTERISTIC WAVEFORMS

Fig.7 Waveforms showing the definition of V_T +, V_T - and V_H ; where V_T + and V_T - are between limits of 20% and 70%.

Fig.8 Typical HC transfer characteristics; V_{CC} = 2 V.

Fig.9 Typical HC transfer characteristics; $V_{CC} = 4.5 \text{ V}$.

Fig.10 Typical HC transfer characteristics; $V_{CC} = 6 \text{ V}$.

Fig.11 Typical HCT transfer characteristics; $V_{CC} = 4.5 \text{ V}$.

Philips Semiconductors Product specification

Hex inverting Schmitt trigger

74HC/HCT14

Fig.12 Typical HCT transfer characteristics; $V_{CC} = 5.5 \text{ V}$.

AC WAVEFORMS

74HC/HCT14

APPLICATION INFORMATION

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

$$P_{ad} = f_i \times (t_r \times I_{CCa} + t_f \times I_{CCa}) \times V_{CC}.$$

Where:

 P_{ad} = additional power dissipation (μW)

f_i = input frequency (MHz)

 t_r = input rise time (μ s); 10% – 90% t_f = input fall time (μ s); 10% – 90%

 I_{CCa} = average additional supply current (μA)

Average I_{CCa} differs with positive or negative input transitions, as shown in Figs 14 and 15.

Fig.14 Average I $_{CC}$ for HC Schmitt trigger devices; linear change of V $_{i}$ between 0.1 V $_{CC}$ to 0.9 V $_{CC}$

Fig.15 Average I_{CC} for HCT Schmitt trigger devices; linear change of V_i between 0.1 V_{CC} to 0.9 V_{CC} .

HC/HCT14 used in a relaxation oscillator circuit, see Fig.16.

Fig.16 Relaxation oscillator using HC/HCT14.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".