INTEGRATED CIRCUITS # DATA SHEET # For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # 74HC/HCT4052 Dual 4-channel analog multiplexer/demultiplexer Product specification File under Integrated Circuits, IC06 December 1990 # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### **FEATURES** - Wide analog input voltage range: ± 5 V. - Low "ON" resistance: 80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$ 70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$ 60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$ - Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals - Typical "break before make" built in - · Output capability: non-standard - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the "4052" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4052 are dual 4-channel analog multiplexers/demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (nY $_0$ to nY $_3$) and a common input/output (nZ). The common channel select logics include two digital select inputs (S $_0$ and S $_1$) and an active LOW enable input (\overline{E}). With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S_0 and S_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 and S_1 . V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$ and S $_1$, and \overline{E}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ to nY $_3$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground). ### **QUICK REFERENCE DATA** $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$ | CVMPOL | DADAMETED | CONDITIONS | TYP | UNIT | | | |-------------------------------------|---|--|-----|------|-------|--| | SYMBOL | PARAMETER | CONDITIONS | нс | нст | CIVIT | | | t _{PZH} / t _{PZL} | turn "ON" time \overline{E} or S_n to V_{OS} | $C_L = 15 \text{ pF} ; R_L = 1 \text{ k}\Omega;$ | 28 | 18 | ns | | | t _{PHZ} / t _{PLZ} | turn "OFF" time \overline{E} or S_n to V_{OS} | V _{CC} = 5 V | 21 | 13 | ns | | | C _I | input capacitance | | 3.5 | 3.5 | pF | | | C _{PD} | power dissipation capacitance per switch | notes 1 and 2 | 57 | 57 | pF | | | | max. switch capacitance | | | | | | | Cs | independent (Y) | | 5 | 5 | pF | | | | common (Z) | | 12 | 12 | pF | | #### Notes 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o)\}$$ where: f_i = input frequency in MHz fo = output frequency in MHz $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o)\} = \text{sum of outputs}$ C_L = output load capacitance in pF C_S = max. switch capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |----------------|------------------------------------|----------------------------| | 1, 5, 2, 4 | 2Y ₀ to 2Y ₃ | independent inputs/outputs | | 6 | Ē | enable input (active LOW) | | 7 | V _{EE} | negative supply voltage | | 8 | GND | ground (0 V) | | 10, 9 | S ₀ , S ₁ | select inputs | | 12, 14, 15, 11 | 1Y ₀ to 1Y ₃ | independent inputs/outputs | | 13, 3 | 1Z, 2Z | common inputs/outputs | | 16 | V _{CC} | positive supply voltage | # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### **APPLICATIONS** - Analog multiplexing and demultiplexing - Digital multiplexing and - demultiplexing - Signal gating ### **FUNCTION TABLE** | | INPUTS | CHANNEL | | |---|----------------|----------------|----------------------| | Ē | S ₁ | S ₀ | ON | | L | L | L | nY ₀ – nZ | | L | L | Н | $nY_1 - nZ$ | | L | Н | L | $nY_2 - nZ$ | | L | Н | Н | $nY_3 - nZ$ | | Н | Х | Х | none | #### Notes - 1. H = HIGH voltage level - L = LOW voltage level - X = don't care # Dual 4-channel analog multiplexer/demultiplexer ### 74HC/HCT4052 #### **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V) | SYMBOL | PARAMETER | MIN. | MAX. | UNIT | CONDITIONS | |--------------------------------------|-----------------------------------|------|-------|------|---| | V _{CC} | DC supply voltage | -0.5 | +11.0 | ٧ | | | ±I _{IK} | DC digital input diode current | | 20 | mA | for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} +0.5 \text{ V}$ | | ±I _{SK} | DC switch diode current | | 20 | mA | for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} +0.5 \text{ V}$ | | ±I _S | DC switch current | | 25 | mA | for -0.5 V < V _S < V _{CC} +0.5 V | | ±I _{EE} | DC V _{EE} current | | 20 | mA | | | ±I _{CC} ; ±I _{GND} | DC V _{CC} or GND current | | 50 | mA | | | T _{stg} | storage temperature range | -65 | +150 | °C | | | P _{tot} | power dissipation per package | | | | for temperature range: –40 to +125 °C 74HC/HCT | | | plastic DIL | | 750 | mW | above +70 °C: derate linearly with 12 mW/K | | | plastic mini-pack (SO) | | 500 | mW | above +70 °C: derate linearly with 8 mW/K | | Ps | power dissipation per switch | | 100 | mW | | #### Note to ratings To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}. #### **RECOMMENDED OPERATING CONDITIONS** | SYMBOL | PARAMETER | | 74HC | | | 74HC | Т | UNIT | CONDITIONS | |---------------------------------|--|-----------------|------|---------------------------|-----------------|------|-----------------|------|--| | STIMBUL | PARAMETER | min. | typ. | max. | min. | typ. | max. | UNII | CONDITIONS | | V _{CC} | DC supply voltage V _{CC} -GND | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | V | see Fig.6 and Fig.7 | | V_{CC} | DC supply voltage V _{CC} –V _{EE} | 2.0 | 5.0 | 10.0 | 2.0 | 5.0 | 10.0 | V | see Fig.6 and Fig.7 | | V _I | DC input voltage range | GND | | V _{CC} | GND | | V _{CC} | V | | | Vs | DC switch voltage range | V _{EE} | | V _{CC} | V _{EE} | | V _{CC} | V | | | T _{amb} | operating ambient temperature range | -40 | | +85 | -40 | | +85 | °C | see DC and AC | | T _{amb} | operating ambient temperature range | -40 | | +125 | -40 | | +125 | °C | CHARACTERISTICS | | t _r , t _f | input rise and fall times | | 6.0 | 1000
500
400
250 | | 6.0 | 500 | ns | $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$ | # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4052. Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4052. ### DC CHARACTERISTICS FOR 74HC/HCT For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V | | | | | | T _{amb} (| (°C) | | | | | TEST CONDITIONS | | | | | | |-----------------|----------------------|------|------|------|--------------------|------------|------|------------|---|------|-----------------|------------------------|------------------------|---------------------------------|-----------------|----| | | | | | | 74HC/ | нст | | | | | | | | | | | | SYMBOL | PARAMETER | | +25 | | −40 t | -40 to +85 | | -40 to +85 | | +125 | UNIT | V _{CC}
(V) | V _{EE}
(V) | I _S
(μ A) | V _{is} | Vı | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | | | | R _{ON} | ON resistance | | _ | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | V_{CC} | V_{IH} | | | | | (peak) | | 100 | 180 | | 225 | | 270 | Ω | 4.5 | 0 | 1000 | to | or | | | | | | | 90 | 160 | | 200 | | 240 | Ω | 6.0 | 0 | 1000 | V_{EE} | V_{IL} | | | | | | | 70 | 130 | | 165 | | 195 | Ω | 4.5 | -4.5 | 1000 | | | | | | R _{ON} | ON resistance (rail) | | 150 | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | V _{EE} | V_{IH} | | | | | | | 80 | 140 | | 175 | | 210 | Ω | 4.5 | 0 | 1000 | | or | | | | | | | 70 | 120 | | 150 | | 180 | Ω | 6.0 | 0 | 1000 | | V_{IL} | | | | | | | 60 | 105 | | 130 | | 160 | Ω | 4.5 | -4.5 | 1000 | | | | | | R _{ON} | ON resistance (rail) | | 150 | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | V_{CC} | V_{IH} | | | | | | | 90 | 160 | | 200 | | 240 | Ω | 4.5 | 0 | 1000 | | or | | | | | | | 80 | 140 | | 175 | | 210 | Ω | 6.0 | 0 | 1000 | | V_{IL} | | | | | | | 65 | 120 | | 150 | | 180 | Ω | 4.5 | -4.5 | 1000 | | | | | | ΔR_{ON} | maximum ∆ON | | _ | | | | | | Ω | 2.0 | 0 | | V_{CC} | V _H | | | | | resistance between | | 9 | | | | | | Ω | 4.5 | 0 | | to | or | | | | | any two channels | | 8 | | | | | | Ω | 6.0 | 0 | | V_{EE} | V_{IL} | | | | | | | 6 | | | | | | Ω | 4.5 | -4.5 | | | | | | #### Notes to the characteristics - At supply voltages (V_{CC}- V_{EE}) approaching 2.0 V the Analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages - 2. For test circuit measuring R_{ON} see Fig.8 # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 ### DC CHARACTERISTICS FOR 74HC Voltages are referenced to GND (ground = 0 V) | | | | | | T _{amb} | (°C) | | | | TEST CONDITIONS | | | | | |-----------------|--|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------|--------------------------|------------------------|--|--|--| | | | | | | 74F | IC . | | | | | | | | | | SYMBOL | PARAMETER | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | V _{EE}
(V) | Vı | OTHER | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | | V _{IH} | HIGH level input voltage | 1.5
3.15
4.2
6.3 | 1.2
2.4
3.2
4.7 | | 1.5
3.15
4.2
6.3 | | 1.5
3.15
4.2
6.3 | | V | 2.0
4.5
6.0
9.0 | | | | | | V _{IL} | LOW level input voltage | | 0.8
2.1
2.8
4.3 | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | V | 2.0
4.5
6.0
9.0 | | | | | | ±II | input leakage
current | | | 0.1
0.2 | | 1.0
2.0 | | 1.0
2.0 | μА | 6.0
10.0 | 0 | V _{CC}
or
GND | | | | ±I _S | analog switch
OFF-state current
per channel | | | 0.1 | | 1.0 | | 1.0 | μА | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.10) | | | ±I _S | analog switch
OFF-state current
all channels | | | 0.2 | | 2.0 | | 2.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.10) | | | ±I _S | analog switch
ON-state current | | | 0.2 | | 2.0 | | 2.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.11) | | | I _{CC} | quiescent supply current | | | 8.0
16.0 | | 80.0
160.0 | | 160
320.0 | μА | 6.0
10.0 | 0 | V _{CC}
or
GND | $V_{is} = V_{EE}$
or V_{CC} ;
$V_{OS} = V_{CC}$
or V_{EE} | | # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 ### **AC CHARACTERISTICS FOR 74HC** GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | | | | | | T _{amb} (| (°C) | | | | | TEST CONDITIONS | | | |-------------------------------------|--|------|-----------------------|-----------------------|--------------------|-----------------------|------------------------|------------------------|-------|--------------------------|---------------------|--|--| | | | | | | 74H | С | | | UNIT | | | | | | SYMBOL | PARAMETER | | | –40 to | 40 to +125 | | V _{CC}
(V) | V _{EE}
(V) | OTHER | | | | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | t _{PHL} / t _{PLH} | propagation
delay
V _{is} to V _{os} | | 14
5
4
4 | 60
12
10
8 | | 75
15
13
10 | | 90
18
15
12 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | R _L = ∞; C _L = 50 pF
(see Fig.18) | | | t _{PZH} / t _{PZL} | turn "ON" time
E to V _{os}
S _n to V _{os} | | 105
38
30
26 | 325
65
55
46 | | 405
81
69
58 | | 490
98
83
69 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | R _L = ∞; C _L = 50 pF
see Fig.19, 20 and 21 | | | t _{PHZ} / t _{PLZ} | turn "OFF" time
E to V _{os}
S _n to V _{os} | | 74
27
22
22 | 250
50
43
38 | | 315
63
54
48 | | 375
75
64
57 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
see Fig.19, 20 and 21 | | # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### **DC CHARACTERISTICS FOR 74HCT** Voltages are referenced to GND (ground = 0) | | | | | | T _{amb} | , (°C) | | | | | TES | CONE | DITIONS | |------------------|--|------|------|-------------|------------------|---------------|-------|----------------|------|------------------------|------------------------|--|---| | | | | | | 74F | łСТ | | | 1 | | | ١., | | | SYMBOL | PARAMETER | | +25 | | -40 | to +85 | −40 t | o +125 | UNIT | V _{CC}
(V) | V _{EE}
(V) | V _I | OTHER | | | | min. | typ. | max. | min. | max. | min. | max. |] | | | | | | V _{IH} | HIGH level input voltage | 2.0 | 1.6 | | 2.0 | | 2.0 | | V | 4.5
to
5.5 | | | | | V _{IL} | LOW level input voltage | | 1.2 | 0.8 | | 0.8 | | 0.8 | V | 4.5
to
5.5 | | | | | ±I _I | input leakage
current | | | 0.1 | | 1.0 | | 1.0 | μА | 5.5 | 0 | V _{CC}
or
GND | | | ±I _S | analog switch
OFF-state
current per
channel | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.10) | | ±l _S | analog switch
OFF-state
current all
channels | | | 0.2 | | 2.0 | | 2.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.10) | | ±I _S | analog switch
ON-state
current | | | 0.2 | | 2.0 | | 2.0 | μА | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.11) | | I _{CC} | quiescent
supply current | | | 8.0
16.0 | | 80.0
160.0 | | 160.0
320.0 | μА | 5.5
5.0 | 0
-5.0 | V _{CC}
or
GND | $\begin{aligned} & V_{is} = V_{EE} \\ & \text{or } V_{CC}; \\ & V_{OS} = V_{CC} \\ & \text{or } V_{EE} \end{aligned}$ | | Δl _{CC} | additional
quiescent
supply
current per
input pin for
unit load
coefficient is 1
(note 1) | | 100 | 360 | | 450 | | 490 | μА | 4.5
to
5.5 | 0 | V _{CC}
-2.1
V | other inputs
at V _{CC} or
GND | ### Note to HCT types 1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |----------------|-----------------------| | S _n | 0.45 | | Ē | 0.45 | # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### **AC CHARACTERISTICS FOR 74HCT** GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | | | | | 1 | T _{amb} (| °C) | | | | TEST CONDITIONS | | | | |-------------------------------------|--|------|----------|----------|--------------------|----------|-------------|-----------|----------|------------------------|------------------------|--|--| | | PARAMETER | | | | 74HC | т | | | <u> </u> | | | | | | SYMBOL | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | V _{EE}
(V) | OTHER | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | t _{PHL} / t _{PLH} | propagation
delay V _{is} to V _{os} | | 5
4 | 12
8 | | 15
10 | | 18
12 | ns | 4.5
4.5 | 0
-4.5 | $R_L = \infty$;
$C_L = 50 \text{ pF}$
(see Fig.18) | | | t _{PZH} / t _{PZL} | turn "ON" time
E to V _{os}
S _n to V _{os} | | 41
28 | 70
48 | | 88
60 | | 105
72 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF see}$
(Fig.19, 20 and 21) | | | t _{PHZ} / t _{PLZ} | turn "OFF" time
E to V _{os}
S _n to V _{os} | | 26
21 | 50
38 | | 63
48 | | 75
57 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(Fig.19, 20 and 21) | | Fig.9 Typical R_{ON} as a function of input voltage V_{is} for V_{is} = 0 to $V_{CC} - V_{EE}$. Fig.10 Test circuit for measuring OFF-state current. Fig.11 Test circuit for measuring ON-state current. # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT ### Recommended conditions and typical values GND = 0 V; T_{amb} = 25 °C | SYMBOL | PARAMETER | typ. | UNIT | V _{CC} (V) | V _{EE} (V) | V _{is(p-p)} (V) | CONDITIONS | |--------------------|---|--------------|------------|---------------------|---------------------|--------------------------|--| | | sine-wave distortion
f = 1 kHz | 0.04
0.02 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | R_L = 10 kΩ; C_L = 50 pF (see Fig.14) | | | sine-wave distortion
f = 10 kHz | 0.12
0.06 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
(see Fig.14) | | | switch "OFF" signal feed-through | -50
-50 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | R_L = 600 Ω ; C_L = 50 pF;
f = 1 MHz see
(Fig.12 and Fig.15) | | | crosstalk between any two switches/ multiplexers | -60
-60 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | $R_L = 600 \Omega; C_L = 50 pF;$
f = 1 MHz (see Fig.16) | | V _(p-p) | crosstalk voltage between
control and any switch
(peak-to-peak value) | 110
220 | mV
mV | 4.5
4.5 | 0
-4.5 | | $R_L = 600 \ \Omega; C_L = 50 \ pF;$
$f = 1 \ MHz \ (E \ or \ S_n,$
square-wave between V_{CC}
and GND, $t_r = t_f = 6 \ ns)$
(see Fig.17) | | f _{max} | minimum frequency response (–3dB) | 170
180 | MHz
MHz | 2.25
4.5 | -2.25
-4.5 | note 2 | $R_L = 50 \Omega$; $C_L = 50 pF$
see (Fig.13 and Fig.14) | | C _S | maximum switch capacitance independent (Y) common (Z) | 5
12 | pF
pF | | | | | #### **Notes to AC characteristics** - 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω). - 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω). #### **General notes** V_{is} is the input voltage at an $nY_{n}\, \text{or}\, nZ$ terminal, whichever is assigned as an input V_{os} is the output voltage at an nY_{n} or nZ terminal, whichever is assigned as an output # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response. Fig.15 Test circuit for measuring switch "OFF" signal feed-through. Fig.16 Test circuits for measuring crosstalk between any two switches/multiplexers. # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 #### **AC WAVEFORMS** # Dual 4-channel analog multiplexer/demultiplexer ### 74HC/HCT4052 #### **TEST CIRCUIT AND WAVEFORMS** #### **Conditions** | TEST | SWITCH | V_{is} | |------------------|-----------------|----------| | t _{PZH} | V _{EE} | V_{CC} | | t_{PZL} | V _{CC} | V_{EE} | | t_{PHZ} | V _{EE} | V_{CC} | | t_{PLZ} | V _{CC} | V_{EE} | | others | open | pulse | | | AMPLITUDE | V _M | t _r ; t _f | | |--------|-----------------|----------------|-----------------------------------|-------| | FAMILY | | | f _{max} ;
PULSE WIDTH | OTHER | | 74HC | V _{CC} | 50% | < 2 ns | 6 ns | | 74HCT | 3.0 V | 1.3 V | < 2 ns | 6 ns | C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. t_r = t_f = 6 ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor. Fig.20 Test circuit for measuring AC performance. #### **Conditions** | TEST | SWITCH | V _{is} | |------------------|-----------------|-----------------| | t _{PZH} | V _{EE} | V _{CC} | | t_{PZL} | V _{CC} | V_{EE} | | t_{PHZ} | V _{EE} | V _{CC} | | t_{PLZ} | V _{CC} | V_{EE} | | others | open | pulse | | | AMPLITUDE | V _M | t _r ; t _f | | |--------|-----------------|----------------|-----------------------------------|-------| | FAMILY | | | f _{max} ;
PULSE WIDTH | OTHER | | 74HC | V _{CC} | 50% | < 2 ns | 6 ns | | 74HCT | 3.0 V | 1.3 V | < 2 ns | 6 ns | C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. t_r = t_f = 6 ns; when measuring t_{max} , there is no constraint to t_r , t_f with 50% duty factor. Fig.21 Input pulse definitions. # Dual 4-channel analog multiplexer/demultiplexer # 74HC/HCT4052 ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".