INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4052 Dual 4-channel analog multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC06

December 1990

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

FEATURES

- Wide analog input voltage range: ± 5 V.
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the "4052" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4052 are dual 4-channel analog multiplexers/demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (nY $_0$ to nY $_3$) and a common input/output (nZ). The common channel select logics include two digital select inputs (S $_0$ and S $_1$) and an active LOW enable input (\overline{E}).

With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S_0 and S_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 and S_1 .

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$ and S $_1$, and \overline{E}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ to nY $_3$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMPOL	DADAMETED	CONDITIONS	TYP	UNIT		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	CIVIT	
t _{PZH} / t _{PZL}	turn "ON" time \overline{E} or S_n to V_{OS}	$C_L = 15 \text{ pF} ; R_L = 1 \text{ k}\Omega;$	28	18	ns	
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E} or S_n to V_{OS}	V _{CC} = 5 V	21	13	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	57	57	pF	
	max. switch capacitance					
Cs	independent (Y)		5	5	pF	
	common (Z)		12	12	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o)\}$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o)\} = \text{sum of outputs}$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 5, 2, 4	2Y ₀ to 2Y ₃	independent inputs/outputs
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
10, 9	S ₀ , S ₁	select inputs
12, 14, 15, 11	1Y ₀ to 1Y ₃	independent inputs/outputs
13, 3	1Z, 2Z	common inputs/outputs
16	V _{CC}	positive supply voltage

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and
- demultiplexing
- Signal gating

FUNCTION TABLE

	INPUTS	CHANNEL	
Ē	S ₁	S ₀	ON
L	L	L	nY ₀ – nZ
L	L	Н	$nY_1 - nZ$
L	Н	L	$nY_2 - nZ$
L	Н	Н	$nY_3 - nZ$
Н	Х	Х	none

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	٧	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} +0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} +0.5 \text{ V}$
±I _S	DC switch current		25	mA	for -0.5 V < V _S < V _{CC} +0.5 V
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: –40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across
the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow
out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and
nZ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC			74HC	Т	UNIT	CONDITIONS
STIMBUL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNII	CONDITIONS
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Fig.6 and Fig.7
V_{CC}	DC supply voltage V _{CC} –V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Fig.6 and Fig.7
V _I	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	V _{EE}		V _{CC}	V _{EE}		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4052.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4052.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb} ((°C)					TEST CONDITIONS					
					74HC/	нст										
SYMBOL	PARAMETER		+25		−40 t	-40 to +85		-40 to +85		+125	UNIT	V _{CC} (V)	V _{EE} (V)	I _S (μ A)	V _{is}	Vı
		min.	typ.	max.	min.	max.	min.	max.								
R _{ON}	ON resistance		_	_		_		_	Ω	2.0	0	100	V_{CC}	V_{IH}		
	(peak)		100	180		225		270	Ω	4.5	0	1000	to	or		
			90	160		200		240	Ω	6.0	0	1000	V_{EE}	V_{IL}		
			70	130		165		195	Ω	4.5	-4.5	1000				
R _{ON}	ON resistance (rail)		150	_		_		_	Ω	2.0	0	100	V _{EE}	V_{IH}		
			80	140		175		210	Ω	4.5	0	1000		or		
			70	120		150		180	Ω	6.0	0	1000		V_{IL}		
			60	105		130		160	Ω	4.5	-4.5	1000				
R _{ON}	ON resistance (rail)		150	_		_		_	Ω	2.0	0	100	V_{CC}	V_{IH}		
			90	160		200		240	Ω	4.5	0	1000		or		
			80	140		175		210	Ω	6.0	0	1000		V_{IL}		
			65	120		150		180	Ω	4.5	-4.5	1000				
ΔR_{ON}	maximum ∆ON		_						Ω	2.0	0		V_{CC}	V _H		
	resistance between		9						Ω	4.5	0		to	or		
	any two channels		8						Ω	6.0	0		V_{EE}	V_{IL}		
			6						Ω	4.5	-4.5					

Notes to the characteristics

- At supply voltages (V_{CC}- V_{EE}) approaching 2.0 V the Analog switch ON-resistance becomes extremely non-linear.
 There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages
- 2. For test circuit measuring R_{ON} see Fig.8

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb}	(°C)				TEST CONDITIONS				
					74F	IC .								
SYMBOL	PARAMETER		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	Vı	OTHER	
		min.	typ.	max.	min.	max.	min.	max.						
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0				
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0				
±II	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μА	6.0 10.0	0	V _{CC} or GND		
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)	
±I _S	analog switch OFF-state current all channels			0.2		2.0		2.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)	
±I _S	analog switch ON-state current			0.2		2.0		2.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)	
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160 320.0	μА	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}	

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

					T _{amb} ((°C)					TEST CONDITIONS		
					74H	С			UNIT				
SYMBOL	PARAMETER			–40 to	40 to +125		V _{CC} (V)	V _{EE} (V)	OTHER				
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	R _L = ∞; C _L = 50 pF (see Fig.18)	
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os} S _n to V _{os}		105 38 30 26	325 65 55 46		405 81 69 58		490 98 83 69	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	R _L = ∞; C _L = 50 pF see Fig.19, 20 and 21	
t _{PHZ} / t _{PLZ}	turn "OFF" time E to V _{os} S _n to V _{os}		74 27 22 22	250 50 43 38		315 63 54 48		375 75 64 57	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ see Fig.19, 20 and 21	

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

					T _{amb}	, (°C)					TES	CONE	DITIONS
					74F	łСТ			1			١.,	
SYMBOL	PARAMETER		+25		-40	to +85	−40 t	o +125	UNIT	V _{CC} (V)	V _{EE} (V)	V _I	OTHER
		min.	typ.	max.	min.	max.	min.	max.]				
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±I _I	input leakage current			0.1		1.0		1.0	μА	5.5	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±l _S	analog switch OFF-state current all channels			0.2		2.0		2.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.2		2.0		2.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$\begin{aligned} & V_{is} = V_{EE} \\ & \text{or } V_{CC}; \\ & V_{OS} = V_{CC} \\ & \text{or } V_{EE} \end{aligned}$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
S _n	0.45
Ē	0.45

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

				1	T _{amb} (°C)				TEST CONDITIONS			
	PARAMETER				74HC	т			<u> </u>				
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)	
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os} S _n to V _{os}		41 28	70 48		88 60		105 72	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF see}$ (Fig.19, 20 and 21)	
t _{PHZ} / t _{PLZ}	turn "OFF" time E to V _{os} S _n to V _{os}		26 21	50 38		63 48		75 57	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (Fig.19, 20 and 21)	

Fig.9 Typical R_{ON} as a function of input voltage V_{is} for V_{is} = 0 to $V_{CC} - V_{EE}$.

Fig.10 Test circuit for measuring OFF-state current.

Fig.11 Test circuit for measuring ON-state current.

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	R_L = 10 kΩ; C_L = 50 pF (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	R_L = 600 Ω ; C_L = 50 pF; f = 1 MHz see (Fig.12 and Fig.15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \ \Omega; C_L = 50 \ pF;$ $f = 1 \ MHz \ (E \ or \ S_n,$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \ ns)$ (see Fig.17)
f _{max}	minimum frequency response (–3dB)	170 180	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 50 pF$ see (Fig.13 and Fig.14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				

Notes to AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

General notes

 V_{is} is the input voltage at an $nY_{n}\, \text{or}\, nZ$ terminal, whichever is assigned as an input

 V_{os} is the output voltage at an nY_{n} or nZ terminal, whichever is assigned as an output

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

Fig.16 Test circuits for measuring crosstalk between any two switches/multiplexers.

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

AC WAVEFORMS

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V_{is}
t _{PZH}	V _{EE}	V_{CC}
t_{PZL}	V _{CC}	V_{EE}
t_{PHZ}	V _{EE}	V_{CC}
t_{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. t_r = t_f = 6 ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V _{CC}
t_{PZL}	V _{CC}	V_{EE}
t_{PHZ}	V _{EE}	V _{CC}
t_{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. t_r = t_f = 6 ns; when measuring t_{max} , there is no constraint to t_r , t_f with 50% duty factor.

Fig.21 Input pulse definitions.

Dual 4-channel analog multiplexer/demultiplexer

74HC/HCT4052

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".