### INTEGRATED CIRCUITS

## DATA SHEET

### For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# 74HC/HCT283 4-bit binary full adder with fast carry

Product specification
File under Integrated Circuits, IC06

December 1990





### 4-bit binary full adder with fast carry

### 74HC/HCT283

#### **FEATURES**

• High-speed 4-bit binary addition

• Cascadable in 4-bit increments

· Fast internal look-ahead carry

· Output capability: standard

I<sub>CC</sub> category: MSI

### **GENERAL DESCRIPTION**

The 74HC/HCT283 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT283 add two 4-bit binary words ( $A_n$  plus  $B_n$ ) plus the incoming carry. The binary sum appears on the sum outputs ( $\Sigma_1$  to  $\Sigma_4$ ) and the out-going carry ( $C_{OUT}$ ) according to the equation:

$$C_{IN} + (A_1 + B_1) + 2(A_2 + B_2) + 4(A_3 + B_3) + 8(A_4 + B_4) =$$
  
=  $\Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{OUT}$ 

Where (+) = plus.

Due to the symmetry of the binary add function, the "283" can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic); see function table. In case of all active LOW operands the results  $\Sigma_1$  to  $\Sigma_4$  and  $C_{OUT}$  should be interpreted also as active LOW. With active HIGH inputs,  $C_{IN}$  must be held LOW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus  $C_{IN},\,A_1,\,B_1$  can be assigned arbitrarily to pins 5, 6, 7, etc.

See the "583" for the BCD version.

#### **QUICK REFERENCE DATA**

GND = 0 V;  $T_{amb}$  = 25 °C;  $t_r$  =  $t_f$  = 6 ns

| CVMDOL                              | DADAMETER                                 | CONDITIONS                                    | TYP |     |      |
|-------------------------------------|-------------------------------------------|-----------------------------------------------|-----|-----|------|
| SYMBOL                              | PARAMETER                                 | CONDITIONS                                    | НС  | нст | UNIT |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay                         | C <sub>L</sub> = 15 pF; V <sub>CC</sub> = 5 V |     |     |      |
|                                     | $C_{IN}$ to $\Sigma_1$                    |                                               | 16  | 15  | ns   |
|                                     | $C_{IN}$ to $\Sigma_2$                    |                                               | 18  | 21  | ns   |
|                                     | $C_{IN}$ to $\Sigma_3$                    |                                               | 20  | 23  | ns   |
|                                     | $C_{IN}$ to $\Sigma_4$                    |                                               | 23  | 27  | ns   |
|                                     | $A_n$ or $B_n$ to $\Sigma_n$              |                                               | 21  | 25  | ns   |
|                                     | C <sub>IN</sub> to C <sub>OUT</sub>       |                                               | 20  | 23  | ns   |
|                                     | $A_n$ or $B_n$ to $C_{OUT}$               |                                               | 20  | 24  | ns   |
| C <sub>I</sub>                      | input capacitance                         |                                               | 3.5 | 3.5 | pF   |
| C <sub>PD</sub>                     | power dissipation capacitance per package | notes 1 and 2                                 | 88  | 92  | pF   |

#### Notes

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f<sub>i</sub> = input frequency in MHz

f<sub>o</sub> = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ 

C<sub>L</sub> = output load capacitance in pF

 $V_{CC}$  = supply voltage in V

2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ 

For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5 V$ 

### 4-bit binary full adder with fast carry

74HC/HCT283

### **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

### **PIN DESCRIPTION**

| PIN NO.      | SYMBOL                           | NAME AND FUNCTION       |
|--------------|----------------------------------|-------------------------|
| 4, 1, 13, 10 | $\Sigma_1$ to $\Sigma_4$         | sum outputs             |
| 5, 3, 14, 12 | A <sub>1</sub> to A <sub>4</sub> | A operand inputs        |
| 6, 2, 15, 11 | B <sub>1</sub> to B <sub>4</sub> | B operand inputs        |
| 7            | C <sub>IN</sub>                  | carry input             |
| 8            | GND                              | ground (0 V)            |
| 9            | C <sub>OUT</sub>                 | carry output            |
| 16           | V <sub>CC</sub>                  | positive supply voltage |







### 4-bit binary full adder with fast carry

### 74HC/HCT283



#### **FUNCTION TABLE**

| PINS         | C <sub>IN</sub> | <b>A</b> <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> | A <sub>4</sub> | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | B <sub>4</sub> | Σ1 | $\Sigma_2$ | Σ3 | Σ4 | C <sub>OUT</sub> | EXAMPLE <sup>(2)</sup> |
|--------------|-----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----|------------|----|----|------------------|------------------------|
| logic levels | L               | L                     | Н              | L                     | Н              | Н              | L              | L              | Н              | Н  | Н          | L  | L  | Н                |                        |
| active HIGH  | 0               | 0                     | 1              | 0                     | 1              | 1              | 0              | 0              | 1              | 1  | 1          | 0  | 0  | 1                | (3)                    |
| active LOW   | 1               | 1                     | 0              | 1                     | 0              | 0              | 1              | 1              | 0              | 0  | 0          | 1  | 1  | 0                | (4)                    |

#### Note

H = HIGH voltage level
 L = LOW voltage level

### 2. example

1001

1010

----

10011

- 3. for active HIGH, example = (9 + 10 = 19)
- 4. for active LOW, example = (carry + 6 + 5 = 12)

### 4-bit binary full adder with fast carry

### 74HC/HCT283



### 4-bit binary full adder with fast carry

74HC/HCT283

#### DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: MSI

### **AC CHARACTERISTICS FOR 74HC**

GND = 0 V;  $t_r = t_f = 6 \text{ ns}$ ;  $C_L = 50 \text{ pF}$ 

|                                     |                                                                         | T <sub>amb</sub> (°C) |                |                 |            |                 |       |                 |    | TEST CONDITIONS   |           |
|-------------------------------------|-------------------------------------------------------------------------|-----------------------|----------------|-----------------|------------|-----------------|-------|-----------------|----|-------------------|-----------|
| SYMBOL                              |                                                                         |                       |                |                 |            |                 |       |                 |    |                   | WAYEEODIA |
|                                     | PARAMETER                                                               | +25                   |                |                 | <b>-40</b> | to +85          | -40 t | -40 to +125     |    | V <sub>CC</sub>   | WAVEFORMS |
|                                     |                                                                         | min.                  | typ.           | max.            | min.       | max.            | min.  | max.            |    | (•)               |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_1$                         |                       | 52<br>19<br>15 | 160<br>32<br>27 |            | 200<br>40<br>34 |       | 240<br>48<br>41 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_2$                         |                       | 58<br>21<br>17 | 180<br>36<br>31 |            | 225<br>45<br>38 |       | 270<br>54<br>46 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_3$                         |                       | 63<br>23<br>18 | 195<br>39<br>33 |            | 245<br>49<br>42 |       | 295<br>59<br>50 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_4$                         |                       | 74<br>27<br>22 | 230<br>46<br>39 |            | 290<br>58<br>49 |       | 345<br>69<br>59 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $A_n$ or $B_n$ to $\Sigma_n$                          |                       | 69<br>25<br>20 | 210<br>42<br>36 |            | 265<br>53<br>45 |       | 315<br>63<br>54 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>C <sub>IN</sub> to C <sub>OUT</sub>                |                       | 63<br>23<br>18 | 195<br>39<br>33 |            | 245<br>49<br>42 |       | 295<br>59<br>50 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay  A <sub>n</sub> or B <sub>n</sub> to C <sub>OUT</sub> |                       | 63<br>23<br>18 | 195<br>39<br>33 |            | 245<br>49<br>42 |       | 295<br>59<br>50 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                                  |                       | 19<br>7<br>6   | 75<br>15<br>13  |            | 95<br>19<br>16  |       | 110<br>22<br>19 | ns | 2.0<br>4.5<br>6.0 | Fig.6     |

### 4-bit binary full adder with fast carry

74HC/HCT283

#### **DC CHARACTERISTICS FOR 74HCT**

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: MSI

### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT                                                             | UNIT LOAD COEFFICIENT |
|-------------------------------------------------------------------|-----------------------|
| C <sub>IN</sub>                                                   | 1.50                  |
| B <sub>2</sub> , A <sub>2</sub> , A <sub>1</sub>                  | 1.00                  |
| B <sub>1</sub>                                                    | 0.40                  |
| B <sub>4</sub> , A <sub>4</sub> , A <sub>3</sub> , B <sub>3</sub> | 0.50                  |

### **AC CHARACTERISTICS FOR 74HCT**

GND = 0 V;  $t_r = t_f = 6 \text{ ns}$ ;  $C_L = 50 \text{ pF}$ 

| SYMBOL                              | PARAMETER                                                               | T <sub>amb</sub> (°C) |      |      |            |      |             |      |      | TEST CONDITIONS        |           |  |
|-------------------------------------|-------------------------------------------------------------------------|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------|--|
|                                     |                                                                         | 74HCT                 |      |      |            |      |             |      |      |                        | MANGEODMO |  |
|                                     |                                                                         | +25                   |      |      | -40 to +85 |      | -40 to +125 |      | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS |  |
|                                     |                                                                         | min.                  | typ. | max. | min.       | max. | min.        | max. |      | (-,                    |           |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_1$                         |                       | 18   | 31   |            | 39   |             | 47   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_2$                         |                       | 25   | 43   |            | 54   |             | 65   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_3$                         |                       | 27   | 46   |            | 58   |             | 69   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $C_{\text{IN}}$ to $\Sigma_4$                         |                       | 31   | 53   |            | 66   |             | 80   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $A_n$ or $B_n$ to $\Sigma_n$                          |                       | 29   | 49   |            | 61   |             | 74   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>C <sub>IN</sub> to C <sub>OUT</sub>                |                       | 27   | 46   |            | 58   |             | 69   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay  A <sub>n</sub> or B <sub>n</sub> to C <sub>OUT</sub> |                       | 28   | 48   |            | 60   |             | 72   | ns   | 4.5                    | Fig.6     |  |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                                  |                       | 7    | 15   |            | 19   |             | 22   | ns   | 4.5                    | Fig.6     |  |

### 4-bit binary full adder with fast carry

### 74HC/HCT283

#### **AC WAVEFORMS**



- (1) HC :  $V_M = 50\%$ ;  $V_I = GND$  to  $V_{CC}$ . HCT:  $V_M = 1.3$  V;  $V_I = GND$  to 3 V.
- Fig.6 Waveforms showing the inputs  $(C_{IN}, A_n, B_n)$  to the outputs  $(\sum_n, C_{OUT})$  propagation delays and the output transition times.



#### Notes to Figs 7 to 10

Figure 7 shows a 3-bit adder using the "283". Tying the operand inputs of the fourth adder (A3, B3) LOW makes  $\Sigma_3$  dependent on, and equal to, the carry from the third adder. Based on the same principle, Figure 8 shows a method of dividing the "283" into a 2-bit and 1-bit adder. The third stage adder (A2, B2,  $\Sigma_2$ ) is used simply as means of transferring the carry into the fourth stage (via A2 and B2) and transferring the carry from the second stage on  $\Sigma_2$ . Note that as long as long as A2 and B2 are the same, HIGH or LOW, they do not influence  $\Sigma_2$ . Similarly, when A2 and B2 are the same, the carry into the third stage does not influence the carry out of the third stage. Figure 9 shows a method of implementing a 5-input encoder, where the

#### **APPLICATION INFORMATION**







inputs are equally weighted. The outputs  $\Sigma$   $_0,$   $\Sigma_1$  and  $\Sigma$   $_2$  produce a binary number equal to the number inputs (I $_1$  to I $_5$ ) that are HIGH. Figure 10 shows a method of implementing a 5-input majority gate. When three or more inputs (I $_1$  to I $_5$ ) are HIGH, the output M $_5$  is HIGH.

### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".