INTEGRATED CIRCUITS ## DATA SHEET ### For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # 74HC/HCT283 4-bit binary full adder with fast carry Product specification File under Integrated Circuits, IC06 December 1990 ### 4-bit binary full adder with fast carry ### 74HC/HCT283 #### **FEATURES** • High-speed 4-bit binary addition • Cascadable in 4-bit increments · Fast internal look-ahead carry · Output capability: standard I_{CC} category: MSI ### **GENERAL DESCRIPTION** The 74HC/HCT283 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT283 add two 4-bit binary words (A_n plus B_n) plus the incoming carry. The binary sum appears on the sum outputs (Σ_1 to Σ_4) and the out-going carry (C_{OUT}) according to the equation: $$C_{IN} + (A_1 + B_1) + 2(A_2 + B_2) + 4(A_3 + B_3) + 8(A_4 + B_4) =$$ = $\Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{OUT}$ Where (+) = plus. Due to the symmetry of the binary add function, the "283" can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic); see function table. In case of all active LOW operands the results Σ_1 to Σ_4 and C_{OUT} should be interpreted also as active LOW. With active HIGH inputs, C_{IN} must be held LOW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus $C_{IN},\,A_1,\,B_1$ can be assigned arbitrarily to pins 5, 6, 7, etc. See the "583" for the BCD version. #### **QUICK REFERENCE DATA** GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns | CVMDOL | DADAMETER | CONDITIONS | TYP | | | |-------------------------------------|---|---|-----|-----|------| | SYMBOL | PARAMETER | CONDITIONS | НС | нст | UNIT | | t _{PHL} / t _{PLH} | propagation delay | C _L = 15 pF; V _{CC} = 5 V | | | | | | C_{IN} to Σ_1 | | 16 | 15 | ns | | | C_{IN} to Σ_2 | | 18 | 21 | ns | | | C_{IN} to Σ_3 | | 20 | 23 | ns | | | C_{IN} to Σ_4 | | 23 | 27 | ns | | | A_n or B_n to Σ_n | | 21 | 25 | ns | | | C _{IN} to C _{OUT} | | 20 | 23 | ns | | | A_n or B_n to C_{OUT} | | 20 | 24 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per package | notes 1 and 2 | 88 | 92 | pF | #### Notes 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$ ### 4-bit binary full adder with fast carry 74HC/HCT283 ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--------------|----------------------------------|-------------------------| | 4, 1, 13, 10 | Σ_1 to Σ_4 | sum outputs | | 5, 3, 14, 12 | A ₁ to A ₄ | A operand inputs | | 6, 2, 15, 11 | B ₁ to B ₄ | B operand inputs | | 7 | C _{IN} | carry input | | 8 | GND | ground (0 V) | | 9 | C _{OUT} | carry output | | 16 | V _{CC} | positive supply voltage | ### 4-bit binary full adder with fast carry ### 74HC/HCT283 #### **FUNCTION TABLE** | PINS | C _{IN} | A ₁ | A ₂ | A ₃ | A ₄ | B ₁ | B ₂ | B ₃ | B ₄ | Σ1 | Σ_2 | Σ3 | Σ4 | C _{OUT} | EXAMPLE ⁽²⁾ | |--------------|-----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----|------------|----|----|------------------|------------------------| | logic levels | L | L | Н | L | Н | Н | L | L | Н | Н | Н | L | L | Н | | | active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | (3) | | active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | (4) | #### Note H = HIGH voltage level L = LOW voltage level ### 2. example 1001 1010 ---- 10011 - 3. for active HIGH, example = (9 + 10 = 19) - 4. for active LOW, example = (carry + 6 + 5 = 12) ### 4-bit binary full adder with fast carry ### 74HC/HCT283 ### 4-bit binary full adder with fast carry 74HC/HCT283 #### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### **AC CHARACTERISTICS FOR 74HC** GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|----------------|-----------------|------------|-----------------|-------|-----------------|----|-------------------|-----------| | SYMBOL | | | | | | | | | | | WAYEEODIA | | | PARAMETER | +25 | | | -40 | to +85 | -40 t | -40 to +125 | | V _{CC} | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (•) | | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_1 | | 52
19
15 | 160
32
27 | | 200
40
34 | | 240
48
41 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_2 | | 58
21
17 | 180
36
31 | | 225
45
38 | | 270
54
46 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_3 | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_4 | | 74
27
22 | 230
46
39 | | 290
58
49 | | 345
69
59 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay A_n or B_n to Σ_n | | 69
25
20 | 210
42
36 | | 265
53
45 | | 315
63
54 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay
C _{IN} to C _{OUT} | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay A _n or B _n to C _{OUT} | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{THL} / t _{TLH} | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig.6 | ### 4-bit binary full adder with fast carry 74HC/HCT283 #### **DC CHARACTERISTICS FOR 74HCT** For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI ### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |---|-----------------------| | C _{IN} | 1.50 | | B ₂ , A ₂ , A ₁ | 1.00 | | B ₁ | 0.40 | | B ₄ , A ₄ , A ₃ , B ₃ | 0.50 | ### **AC CHARACTERISTICS FOR 74HCT** GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | SYMBOL | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | | |-------------------------------------|---|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------|--| | | | 74HCT | | | | | | | | | MANGEODMO | | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | | | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_1 | | 18 | 31 | | 39 | | 47 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_2 | | 25 | 43 | | 54 | | 65 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_3 | | 27 | 46 | | 58 | | 69 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay C_{IN} to Σ_4 | | 31 | 53 | | 66 | | 80 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay A_n or B_n to Σ_n | | 29 | 49 | | 61 | | 74 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay
C _{IN} to C _{OUT} | | 27 | 46 | | 58 | | 69 | ns | 4.5 | Fig.6 | | | t _{PHL} / t _{PLH} | propagation delay A _n or B _n to C _{OUT} | | 28 | 48 | | 60 | | 72 | ns | 4.5 | Fig.6 | | | t _{THL} / t _{TLH} | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig.6 | | ### 4-bit binary full adder with fast carry ### 74HC/HCT283 #### **AC WAVEFORMS** - (1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V. - Fig.6 Waveforms showing the inputs (C_{IN}, A_n, B_n) to the outputs (\sum_n, C_{OUT}) propagation delays and the output transition times. #### Notes to Figs 7 to 10 Figure 7 shows a 3-bit adder using the "283". Tying the operand inputs of the fourth adder (A3, B3) LOW makes Σ_3 dependent on, and equal to, the carry from the third adder. Based on the same principle, Figure 8 shows a method of dividing the "283" into a 2-bit and 1-bit adder. The third stage adder (A2, B2, Σ_2) is used simply as means of transferring the carry into the fourth stage (via A2 and B2) and transferring the carry from the second stage on Σ_2 . Note that as long as long as A2 and B2 are the same, HIGH or LOW, they do not influence Σ_2 . Similarly, when A2 and B2 are the same, the carry into the third stage does not influence the carry out of the third stage. Figure 9 shows a method of implementing a 5-input encoder, where the #### **APPLICATION INFORMATION** inputs are equally weighted. The outputs Σ $_0,$ Σ_1 and Σ $_2$ produce a binary number equal to the number inputs (I $_1$ to I $_5$) that are HIGH. Figure 10 shows a method of implementing a 5-input majority gate. When three or more inputs (I $_1$ to I $_5$) are HIGH, the output M $_5$ is HIGH. ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".