74ABT273

FEATURES

- · Eight edge-triggered D-type flip-flops
- · Buffered common clock
- · Buffered asynchronous Master Reset
- · Power-up reset
- See 74A8T377 for clock enable version
- See 74A8T373 for transparent latch version
- See 74ABT374 for 3-State version
- ESD protection exceeds 2000 V per Mil Std 833 Method 3015 and 200 V per machine model.

DESCRIPTION

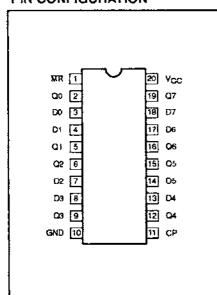
The 74ABT273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced Low independent of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where the true output only is required and the CP and MR are common elements.

QUICK REFERENCE DATA

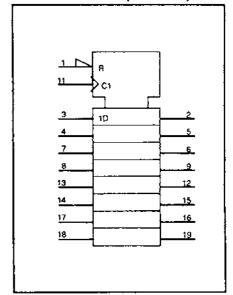
SYMBOL	PARAMETER	CONDITIONS T _{errib} = 25°C; GND = 9V	TYPICAL	UNIT
₽ ГН Ф НГ	Propagation delay CP to Qn	C _L = 50pF; V _{CC} = 5V	5.3	ns
CW	input capacitance	V _i = 0V or V _{CC}	3.5	рF
[ССН	Total supply current	Outputs High; V _∞ =5.5V	500	nA


ORDERING INFORMATION

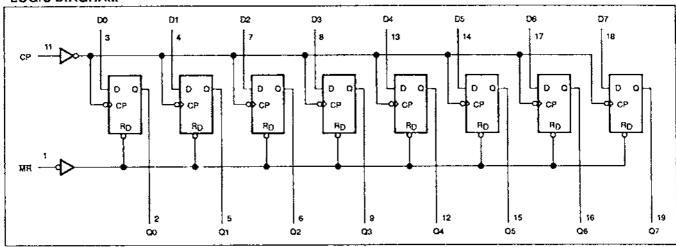
PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
20-pin plastic DIP	-40°C to +85°C	74ABT273N	0408B
20-pin plastic SOL	-40°C to +85°C	74ABT273D	0172D
20-pin plastic SSOP Type II	-40°C to +85°C	74A8T273DB	1640A

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
11	СР	Clock pulse input (active rising edge)
3, 4, 7, 8, 13, 14, 17, 18	D0 – D7	Data inputs
2, 5, 6, 9, 12, 15, 16, 19	Q0 - Q7	Data outputs
1	MR	Master Reset input (active-Low)
10	GND	Ground (0V)
20	Vcc	Positive supply voltage


PIN CONFIGURATION

LOGIC SYMBOL



LOGIC SYMBOL (IEEE/IEC)

74ABT273

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS		OUTPUTS	OPERATING
MR	СР	Dn	Q0 - Q7	MODE
L	Х	X	L	Reset (dear)
Н	1	h	н	Load "1"
Н	1	[L	Load "0"

H = High voltage level

h = High voltage level one set-up time prior to the Low-to-High clock transition

L = Low voltage level

Low voltage level one set-up time prior to the Low-to-High clock transition

X = Don't care

Low-to-High dock transition

ABSOLUTE MAXIMUM RATINGS1, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		0.5 to +7.0	V
Ţſĸ	DC input diode current	V ₁ < 0	-18	mA
V _I	DC input voltage ³		-1.2 to +7.0	V
юк	DC output diode current	V ₀ < 0	-50	mA
Vout	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
Гоит	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		65 to 150	°¢

NOTES:

- Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
 device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
 absolute-maximum-rated conditions for extended periods may affect device reliability.
- The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ABT273

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
		Min	Max	-
Vcc	DC supply voltage	4.5	5.5	v
V _I	Input voltage	0	Vcc	V
V _{IH}	High-level input voltage	2.0		V
VIL	Low-level input voltage		0.8	٧
IOH	High-level output current		-32	mA
l _{OL}	Low-level output current		64	mA
ΔΫΔν	input transition rise or fall rate	0	5	ns/V
Tamb	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

			}		LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	T,	_{mb} = +25	°C	T _{amb} ≈ −40°C to +85°C		זואט
			Min	Тур	Max	Min	Max	
V _{IK}	input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	V
		$V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} \text{ or } V_{IH}$	2.5	2.9		2.5		
V_{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0		٧
		$V_{CC} = 4.5V; I_{OH} = -32mA; V_I = V_{IL} \text{ or } V_{IH}$	2.0	2.4		2.0		,,,
VOL	Low-level output voltage	$V_{CC} = 4.5V$; $I_{OL} = 64mA$; $V_i = V_{iL}$ or V_{iH}		0.42	0.55		0.55	٧
V _{RST}	Power-up output low voltage ³	V _{CC} = 5.5V; I _O = 1mA; V _I = GND or V _{CC}		0.13	0.55		0.55	٧
l _i	Input leakage current	V _{CC} = 5.5V; V _I = GND or 5.5V		±0.01	±1.0		±1.0	μА
[]] OFF	Power-off leakage current	$V_{CC} = 0.0V$; V_{Q} or $V_{1} \le 4.5V$		±5.0	±100	<u> </u>	±100	μА
JCEX	Output High leakage current	$V_{CC} = 5.5V$; $V_{C} = 5.5V$; $V_{I} = GND$ or V_{CC}		5.0	50		50	μΑ
lo	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V	-50	-100	-180	–50	-180	mA
Іссн	Quiescent supply current	V _{CC} = 5.5V; Outputs High, V _I = GND or V _{CC}	1	0,5	50		50	μA
lccr	{	$V_{CC} = 5.5V$; Outputs Low, $V_1 = GND$ or V_{CC}	<u> </u>	24	30		30	mΑ
Δlcc	Additional supply current per input pin ²	V _{CC} = 5.5V; One data input at 3.4V, other inputs at V _{CC} or GND		0.5	1.5		1.5	mΑ

NOTES:

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
- 2. This is the increase in supply current for each input at 3.4V.
- 3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.

74ABT273

AC CHARACTERISTICS

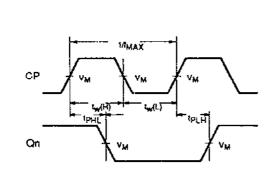
 $GND=0V(\,t_R=t_F=2.5ns)\,C_L=50pF,\,R_L=500\Omega$

SYMBOL			LIMITS					
	PARAMETER	WAVEFORM	T	smb = +25° / _{CC} = +5.0	PC V	T _{amb} = -40 V _{CC} = +5	°C to +85°C .0V ±0,5V	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	150	200		150		MHz
t _{PLH}	Propagation delay CP to Qn	1	2.5 3.3	4.5 5.3	6.0 6.8	2.5 3.3	6.5 7.3	ns
^t PHL	Propagation delay MR to On	2	2.5	4.5	6.0	2.5	7.0	กร

AC SETUP REQUIREMENTS

GND = 0V; $t_R = t_F = 2.5 ns$; $C_L = 50 pF$, $R_L = 500 \Omega$

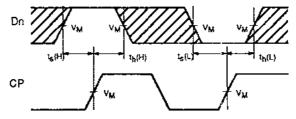
			Ţ	LIMITS		
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = V _{CC} =	+25°C +5.0V	T _{amb} = -40°C to +85°C V _{CC} = +5.0V ±0.5V	UNIT
			Min	Тур	Min	1
t ₅(H) t₅(L)	Setup time, High or Low Dn to CP	3	2.0 2.5	0.8 0.7	2.0 2.5	
t _h (H) t _h (L)	Hold time, High or Low Dn to CP	3	0.7 0.7	-0.5 -0.5	0.7 0.7	ns
t _w (H) t _w (L)	Clock pulse width High or Low	1	3.3 3.3	2.4 2.9	3.3 3.3	กร
1 ₄(L)	Master Reset pulse width, Low	2	3.3	2.8	3.3	ns
trec	Recovery time MR to CP	2	2.0	0.7	2.0	ns


Product specification

Octal D flip-flop

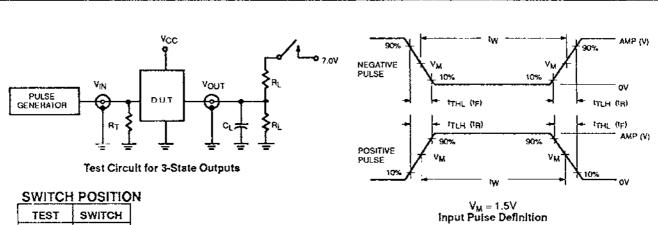
74ABT273

AC WAVEFORMS


 $V_{M} = 1.5V$, $V_{IN} = GND$ to 3.0V

Waveform 1, Propagation Delay, Clock input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time



Waveform 3, Data Setup and Hold Times

NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.

74ABT273

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
ΑΊ	open
	1

DEFINITIONS

- R_L = Load resistor; see AC CHARACTERISTICS for value.
- C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
- $\label{eq:total_total} \textbf{R}_T = \quad \text{Termination resistance should be equal to } \textbf{Z}_{OUT} \text{ of } \\ \text{pulse generators.}$

PABHILU	INPUT PULSE REQUIREMENTS							
FAMILY	Amplitude	Rep. Rate	tyy	t _R	t⊨			
74A8T	3.0V	1MHz	500ns	2.5ns	2.5ns			