Pin Connections, Bottom View All Leads Electrically Isolated From Case MOTOROLA Semiconductors BOX 955 * PHOENIX ARIZONA 85001 ### DUAL NPN SILICON ANNULAR*TRANSISTORS . . . especially designed for low-level, low-noise differential amplifier applications. - High Breakdown Voltage $BV_{CEO} = 70 \, Vdc \, typical$ - $_{f o}$ Very High Beta Guaranteed from 10 $_{\mu}$ Adc to 1.0 mAdc - Beta Match as tight as 0.9 to 1 - $_{\text{o}}$ Base-Voltage Differential as low as 3 mW max at $I_{\text{C}} = 100\,\mu\text{Adc}$ - Excellent Noise Characteristics as low as 3.0 db max at f = 1 kc ### ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) | | | Rat | | | | |--|-------------------------|------------------------|------------------------|-------------|--| | Characteristics | Symbol | 2N2913-18
2N2972-77 | 2N2919-20
2N2978-79 | Unit | | | Collector-Base Voltage | v _{сво} | 45 | 60 | Vdc | | | Collector-Emitter Voltage | V _{CEO} | 45 | 60 | Vdc | | | Emitter-Base Voltage | V _{EBO} | 6 | | Vdc | | | DC Collector Current | I _C | 30 | | mAdc | | | Junction Temperature | $ extbf{T}_{ extsf{J}}$ | +200 | | °C | | | Storage Temperature Range | T _{stg} | -65 to +200 | | °C | | | | | ONE SIDE | BOTH SIDES | | | | Total Device Dissipation @ TA = 25°C | P_{D} | | | | | | TO-5 Case
Derate above 25°C | _ | 300
1.7 | 600
3.4 | mW
mW/°C | | | TO-18 Case
Derate above 25°C | ٠. | 250
1.43 | 300
1.72 | mW
mW/°C | | | Total Device Dissipation @ T _C = 25°C | P _D | | | | | | TO-5 Case
Derate above 25°C | _ | 750
4.3 | 1500
8. 6 | mW
mW/°C | | | TO-18 Case
Derate above 25°C | | 500
2.85 | 750
4. 3 | mW
mW/°C | | Patents pending ## 2N2913 thru 2N2920/2N2972 thru 2N2979 #### ELECTRICAL CHARACTERISTICS (At TA = 25°C unless otherwise noted) | Characteristics | | Symbol | Min | Тур | Max | Unit | |--|--|------------------------|------------|----------|----------------------|-------| | Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$) | 2N2913 thru 2N2918, 2N2972 thru 2N2977
2N2919, 2N2920, 2N2978, 2N2979 | вусво | 45
60 | 90 | | Vde | | Collector-Emitter Sustaining Voltage (^{1}C = 10 mAdc, ^{1}B = 0) | 2N2913, thru 2N2918, 2N2972 thru 2N2977
2N2919, 2N2920, 2N2978, 2N2979 | BV _{CEO(sus)} | 45
60 | 70 | 宝 | Vdc | | Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$) | All Types | BV _{EBO} | 6 | 7 | <i>-</i> | Vdc | | Collector-Base Cutoff Current ($V_{CB} = 45 \text{ Vdc}, I_E = 0$) ($V_{CB} = 45 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C}$) | 2N2913 thru 18, 2N2972 thru 77
2N2919, 2N2920, 2N2978, 2N2979
All Types | ГСВО | (= | | 0.010
0.002
10 | μAdc | | Collector-Emitter Cutoff Current $(V_{CE} = 5 \text{ Vdc}, I_B = 0)$ | All Types | ICEO | <i>P</i> | | 0,002 | μAdc | | Emitter-Base Cutoff Current (V _{EB} = 5 Vdc, I _C = 0) | All Types | IEBO | | <u> </u> | 0.002 | μAdc | | Collector-Emitter Saturation Voltage $(I_C = 1 \text{ mAdc}, I_B = 0.1 \text{ mAdc})$ | All Types | V _{CE(sat)} | _ | _ | 0. 35 | Vdc | | Base-Emitter "ON" Voltage ($I_C = 100 \mu Adc, V_{CE} = 5 Vdc$) | All Types | V _{BE(ON)} | | _ | 0.7 | Vdc | | DC Current Gain* $(I_C = 10 \mu Adc, V_{CE} = 5 Vdc)$ | 2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18, 20, 2N2973, 75, 77, 79 | h _{FE} | 60
150 | = | 240
600 | _ | | $(I_C = 10 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ T_A = -55^{\circ}\text{C})$ | 2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18, 20, 2N2973, 75, 77, 79 | | 15
30 | _ | _ | | | $(I_C = 100 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc})$ | 2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18, 20, 2N2973, 75, 77, 79 | | 100
225 | ·_ | | | | $(I_C = 1 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$ | 2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18, 20, 2N2973, 75, 77, 79 | | 150
300 | | - | | | Output Capacitance
(V _{CB} = 5 Vdc, I _E = 0, f = 140 kc) | All Types | C _{obo} | _ | 4 | 6 | pf | | High Frequency Current Gain $(I_C = 500 \mu A, V_{CE} = 5 V, f = 20 mc)$ | . All Types | h _{fe} | 3.0 | _ | | | | Input Impedance (I _C = 1.0 mA, V _{CB} = 5 V, f = 1 kc) | All Types | h _{ib} | 25 | 28 | 32 | ohms | | Output Admittance
(I _C = 1.0 mA, V _{CB} = 5 V, f = 1 kc) | All Types | h _{ob} | _ | _ | 1.0 | μmhos | | Noise Figure ($I_C = 10 \mu A$, $V_{CE} = 5 \text{ V}$, $R_G = 10 \text{ kohms}$) | | NF | | | | db | | | os 2N2914, 16, 18, 20, 73, 75, 77, 79
2N2913, 15, 17, 19, 72, 74, 76, 78 | | = | 2 3 | 3
4 | | | i = 10 cps to 15, 7 kc, BW = 10 | kc 2N2914, 16, 18, 20, 73, 75, 77, 79
2N2913, 15, 17, 19, 72, 74, 76, 78 | | = | 2 3 | 3
4 | | #### MATCHING CHARACTERISTICS | TOTAL CHARACTERISTICS | <u>, </u> | | | | | | |---|---|--|-----|-----|-----|------| | DC Current Gain Ratio** | | h /h ** | | | | | | $(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$ | 2N2917, 18, 76, 77 | h _{FE1} /h _{FE2} ** | 0.8 | | 1.0 | | | | 2N2915, 16, 19, 20, 74, 75, 78, 79 | | 0.9 | .— | 1.0 | | | Base Voltage Differential | | les es l | | ••• | | | | $(I_C = 10 \mu\text{A}, \text{ to 1.0 mA}, \text{ V}_{CE} = 5 \text{ Vdc})$ | 2N2917, 18, 76, 77 | $ v_{ m BE1}-v_{ m BE2} $ | | | | . 1 | | | 2N2915, 16, 19, 20, 74, 75, 78, 79 | | | | 10 | mVdc | | $(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$ | | | _ | | 5 | | | (1C = 100 μ Adc, V _{CE} = 5 Vdc) | 2N2917, 18, 76, 77 | | | | 5 | | | · | 2N2915, 16, 19, 20, 74, 75, 78, 79, | | | | 3 | | | Base Voltage Differential Change | , | Δ(ΨΨ \ | | | | | | $(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc}, T_A = -55 \text{to} +25$ | °C) 2N2917, 18, 76, 77 | Δ(V _{BE1} -V _{BE2}) | | | 1.6 | mVdc | | CE A | 2N2915, 16, 19, 20, 74, 75, 78, 79 | 1 | | | 0.8 | | | $(I_C = 100 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ T_A = 25 \text{to} \ 125^\circ$ | | | | | | | | CE - O Vac, 1A - 25 to 125 | C) 2N2917, 18, 76, 77
2N2915, 16, 19, 20, 74, 75, 78, 79 | | - | _ | 2.0 | | | | 2112010, 10, 10, 20, 14, 10, 10, 19 | | | _ | 1.0 | 1 | ^{*} Pulse Test \leq 300 μ sec, duty cycle \leq 2% ^{**}The lowest $h_{\mbox{\scriptsize FE}}$ reading is taken as $h_{\mbox{\scriptsize FE1}}$ for this ratio # MOTOROLA Semiconductor Products Inc. BOX 955 • PHOENIX, ARIZONA 85001 • A SUBSIDIARY OF MOTOROLA INC.