

Pin Connections, Bottom View All Leads Electrically Isolated From Case

MOTOROLA
Semiconductors
BOX 955 * PHOENIX ARIZONA 85001

DUAL NPN SILICON ANNULAR*TRANSISTORS

. . . especially designed for low-level, low-noise differential amplifier applications.

- High Breakdown Voltage $BV_{CEO} = 70 \, Vdc \, typical$
- $_{f o}$ Very High Beta Guaranteed from 10 $_{\mu}$ Adc to 1.0 mAdc
- Beta Match as tight as 0.9 to 1
- $_{\text{o}}$ Base-Voltage Differential as low as 3 mW max at $I_{\text{C}} = 100\,\mu\text{Adc}$
- Excellent Noise Characteristics as low as 3.0 db max at f = 1 kc

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

		Rat			
Characteristics	Symbol	2N2913-18 2N2972-77	2N2919-20 2N2978-79	Unit	
Collector-Base Voltage	v _{сво}	45	60	Vdc	
Collector-Emitter Voltage	V _{CEO}	45	60	Vdc	
Emitter-Base Voltage	V _{EBO}	6		Vdc	
DC Collector Current	I _C	30		mAdc	
Junction Temperature	$ extbf{T}_{ extsf{J}}$	+200		°C	
Storage Temperature Range	T _{stg}	-65 to +200		°C	
		ONE SIDE	BOTH SIDES		
Total Device Dissipation @ TA = 25°C	P_{D}				
TO-5 Case Derate above 25°C	_	300 1.7	600 3.4	mW mW/°C	
TO-18 Case Derate above 25°C	٠.	250 1.43	300 1.72	mW mW/°C	
Total Device Dissipation @ T _C = 25°C	P _D				
TO-5 Case Derate above 25°C	_	750 4.3	1500 8. 6	mW mW/°C	
TO-18 Case Derate above 25°C		500 2.85	750 4. 3	mW mW/°C	

Patents pending

2N2913 thru 2N2920/2N2972 thru 2N2979

ELECTRICAL CHARACTERISTICS (At TA = 25°C unless otherwise noted)

Characteristics		Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	2N2913 thru 2N2918, 2N2972 thru 2N2977 2N2919, 2N2920, 2N2978, 2N2979	вусво	45 60	90		Vde
Collector-Emitter Sustaining Voltage (^{1}C = 10 mAdc, ^{1}B = 0)	2N2913, thru 2N2918, 2N2972 thru 2N2977 2N2919, 2N2920, 2N2978, 2N2979	BV _{CEO(sus)}	45 60	70	宝	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	All Types	BV _{EBO}	6	7	<i>-</i>	Vdc
Collector-Base Cutoff Current ($V_{CB} = 45 \text{ Vdc}, I_E = 0$) ($V_{CB} = 45 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C}$)	2N2913 thru 18, 2N2972 thru 77 2N2919, 2N2920, 2N2978, 2N2979 All Types	ГСВО	(=		0.010 0.002 10	μAdc
Collector-Emitter Cutoff Current $(V_{CE} = 5 \text{ Vdc}, I_B = 0)$	All Types	ICEO	<i>P</i>		0,002	μAdc
Emitter-Base Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	All Types	IEBO		<u> </u>	0.002	μAdc
Collector-Emitter Saturation Voltage $(I_C = 1 \text{ mAdc}, I_B = 0.1 \text{ mAdc})$	All Types	V _{CE(sat)}	_	_	0. 35	Vdc
Base-Emitter "ON" Voltage ($I_C = 100 \mu Adc, V_{CE} = 5 Vdc$)	All Types	V _{BE(ON)}		_	0.7	Vdc
DC Current Gain* $(I_C = 10 \mu Adc, V_{CE} = 5 Vdc)$	2N2913, 15, 17, 19, 2N2972, 74, 76, 78 2N2914, 16, 18, 20, 2N2973, 75, 77, 79	h _{FE}	60 150	=	240 600	_
$(I_C = 10 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ T_A = -55^{\circ}\text{C})$	2N2913, 15, 17, 19, 2N2972, 74, 76, 78 2N2914, 16, 18, 20, 2N2973, 75, 77, 79		15 30	_	_	
$(I_C = 100 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc})$	2N2913, 15, 17, 19, 2N2972, 74, 76, 78 2N2914, 16, 18, 20, 2N2973, 75, 77, 79		100 225	·_		
$(I_C = 1 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$	2N2913, 15, 17, 19, 2N2972, 74, 76, 78 2N2914, 16, 18, 20, 2N2973, 75, 77, 79		150 300		-	
Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, f = 140 kc)	All Types	C _{obo}	_	4	6	pf
High Frequency Current Gain $(I_C = 500 \mu A, V_{CE} = 5 V, f = 20 mc)$. All Types	h _{fe}	3.0	_		
Input Impedance (I _C = 1.0 mA, V _{CB} = 5 V, f = 1 kc)	All Types	h _{ib}	25	28	32	ohms
Output Admittance (I _C = 1.0 mA, V _{CB} = 5 V, f = 1 kc)	All Types	h _{ob}	_	_	1.0	μmhos
Noise Figure ($I_C = 10 \mu A$, $V_{CE} = 5 \text{ V}$, $R_G = 10 \text{ kohms}$)		NF				db
	os 2N2914, 16, 18, 20, 73, 75, 77, 79 2N2913, 15, 17, 19, 72, 74, 76, 78		=	2 3	3 4	
i = 10 cps to 15, 7 kc, BW = 10	kc 2N2914, 16, 18, 20, 73, 75, 77, 79 2N2913, 15, 17, 19, 72, 74, 76, 78		=	2 3	3 4	

MATCHING CHARACTERISTICS

TOTAL CHARACTERISTICS	<u>, </u>					
DC Current Gain Ratio**		h /h **				
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$	2N2917, 18, 76, 77	h _{FE1} /h _{FE2} **	0.8		1.0	
	2N2915, 16, 19, 20, 74, 75, 78, 79		0.9	.—	1.0	
Base Voltage Differential		les es l		•••		
$(I_C = 10 \mu\text{A}, \text{ to 1.0 mA}, \text{ V}_{CE} = 5 \text{ Vdc})$	2N2917, 18, 76, 77	$ v_{ m BE1}-v_{ m BE2} $. 1
	2N2915, 16, 19, 20, 74, 75, 78, 79				10	mVdc
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$			_		5	
(1C = 100 μ Adc, V _{CE} = 5 Vdc)	2N2917, 18, 76, 77				5	
·	2N2915, 16, 19, 20, 74, 75, 78, 79,				3	
Base Voltage Differential Change	, , , , , , , , , , , , , , , , , , , ,	Δ(ΨΨ \				
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc}, T_A = -55 \text{to} +25$	°C) 2N2917, 18, 76, 77	Δ(V _{BE1} -V _{BE2})			1.6	mVdc
CE A	2N2915, 16, 19, 20, 74, 75, 78, 79	1			0.8	
$(I_C = 100 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ T_A = 25 \text{to} \ 125^\circ$						
CE - O Vac, 1A - 25 to 125	C) 2N2917, 18, 76, 77 2N2915, 16, 19, 20, 74, 75, 78, 79		-	_	2.0	
	2112010, 10, 10, 20, 14, 10, 10, 19			_	1.0	1

^{*} Pulse Test \leq 300 μ sec, duty cycle \leq 2%

^{**}The lowest $h_{\mbox{\scriptsize FE}}$ reading is taken as $h_{\mbox{\scriptsize FE1}}$ for this ratio

MOTOROLA Semiconductor Products Inc.

BOX 955 • PHOENIX, ARIZONA 85001 • A SUBSIDIARY OF MOTOROLA INC.