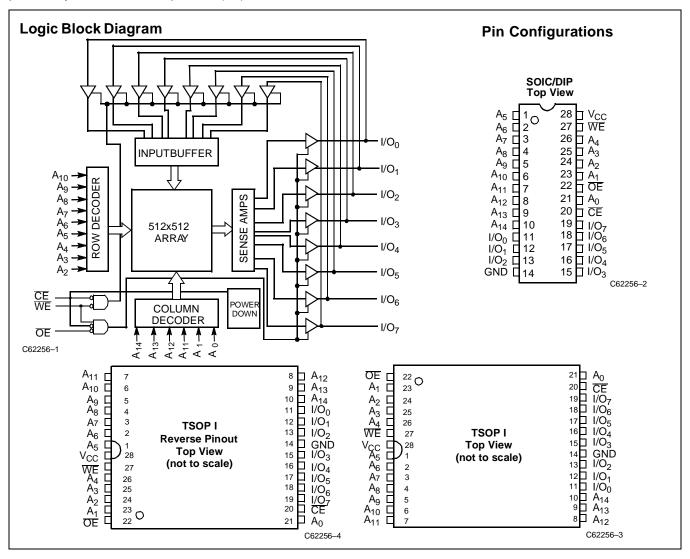




#### **Features**

- 4.5V-5.5V Operation
- Low active power (70 ns, LL version)
  - -275 mW (max.)
- Low standby power (70 ns, LL version)
  - 28 μW (max.)
- 55, 70 ns access time
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

## **Functional Description**


The CY62256 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW

# 32Kx8 Static RAM

output enable ( $\overline{OE}$ ) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected. The CY62256 is in the standard 450-mil-wide (300-mil body width) SOIC, TSOP, and 600-mil PDIP packages.

An active LOW write enable signal ( $\overline{WE}$ ) controls the writing/reading operation of the memory. When  $\overline{CE}$  and  $\overline{WE}$  inputs are both LOW, data on the eight data input/output pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is written into the memory location addressed by the address present on the address pins (A<sub>0</sub> through A<sub>14</sub>). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{CE}$  and  $\overline{OE}$  active LOW, while  $\overline{WE}$  remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable ( $\overline{\text{WE}}$ ) is HIGH.



CA 95134



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential (Pin 28 to Pin 14).....-0.5V to +7.0V DC Input Voltage<sup>[1]</sup>......-0.5V to V<sub>CC</sub> + 0.5V

| Output Current into Outputs (LOW)                      | 20 mA   |
|--------------------------------------------------------|---------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-Up Current                                       | >200 mA |

## **Operating Range**

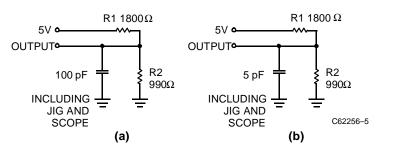
| Range      | Ambient Temperature | V <sub>CC</sub> |
|------------|---------------------|-----------------|
| Commercial | 0°C to +70°C        | 5V ± 10%        |
| Industrial | -40°C to +85°C      | 5V ± 10%        |

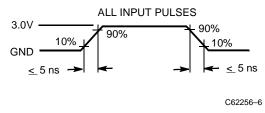
## **Electrical Characteristics** Over the Operating Range

|                  |                                    |                                                       |      | CY62256-55 |                    |                          | CY62256-70 |                    |                          |      |
|------------------|------------------------------------|-------------------------------------------------------|------|------------|--------------------|--------------------------|------------|--------------------|--------------------------|------|
| Parameter        | Description                        | Test Conditions                                       |      | Min.       | Typ <sup>[2]</sup> | Max.                     | Min.       | Typ <sup>[2]</sup> | Max.                     | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                | $V_{CC} = Min., I_{OH} = -1.$                         | 0 mA | 2.4        |                    |                          | 2.4        |                    |                          | V    |
| V <sub>OL</sub>  | Output LOW Voltage                 | $V_{CC} = Min., I_{OL} = 2.1$                         | mΑ   |            |                    | 0.4                      |            |                    | 0.4                      | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                 |                                                       |      | 2.2        |                    | V <sub>CC</sub><br>+0.5V | 2.2        |                    | V <sub>CC</sub><br>+0.5V | V    |
| V <sub>IL</sub>  | Input LOW Voltage                  |                                                       |      | -0.5       |                    | 0.8                      | -0.5       |                    | 0.8                      | V    |
| I <sub>IX</sub>  | Input Load Current                 | $GND \le V_1 \le V_{CC}$                              |      | -0.5       |                    | +0.5                     | -0.5       |                    | +0.5                     | μΑ   |
| I <sub>OZ</sub>  | Output Leakage<br>Current          | $GND \leq V_O \leq V_CC$ , Output Disabled            |      | -0.5       |                    | +0.5                     | -0.5       |                    | +0.5                     | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply   | V <sub>CC</sub> = Max.,                               |      |            | 28                 | 55                       |            | 28                 | 55                       | mA   |
|                  | Current                            | $I_{OUT} = 0 \text{ mA},$<br>$f = f_{MAX} = 1/t_{RC}$ | L    |            | 25                 | 50                       |            | 25                 | 50                       | mA   |
|                  |                                    |                                                       | LL   |            | 25                 | 50                       |            | 25                 | 50                       | mA   |
| I <sub>SB1</sub> | Automatic CE                       | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,          |      |            | 0.5                | 2                        |            | 0.5                | 2                        | mA   |
|                  | Power-Down Current—<br>TTL Inputs  | $V_{INI} < V_{II}$ , $f = f_{M\Delta X}$              | L    |            | 0.4                | 0.6                      |            | 0.4                | 0.6                      | mA   |
|                  |                                    |                                                       | LL   |            | 0.3                | 0.5                      |            | 0.3                | 0.5                      | mA   |
| I <sub>SB2</sub> | Automatic CE                       | Max. V <sub>CC</sub> ,                                |      |            | 1                  | 5                        |            | 1                  | 5                        | mA   |
|                  | Power-Down Current—<br>CMOS Inputs | $V_{INI} > V_{CC} - 0.3V$                             | L    |            | 2                  | 50                       |            | 2                  | 50                       | μΑ   |
|                  |                                    |                                                       | LL   |            | 0.1                | 5                        |            | 0.1                | 5                        | μΑ   |
|                  |                                    | Indust'l Temp Range                                   | LL   |            | 0.1                | 10                       |            | 0.1                | 10                       | μΑ   |

Shaded area contains preliminary information.

## Capacitance<sup>[3]</sup>


| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 8    | pF   |

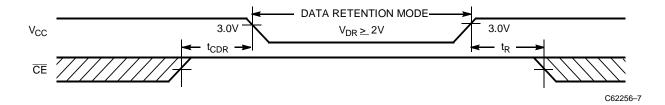

#### Note:

- 1.  $V_{IL}$  (min.) = -2.0V for pulse durations of less than 20 ns.
- Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25°C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.
   Tested initially and after any design or process changes that may affect these parameters.



## **AC Test Loads and Waveforms**






Equivalent to: THÉ/ENIN EQUIVALENT

## **Data Retention Characteristics**

| Parameter                       | Description                             |             | Conditions <sup>[4]</sup>                                 | Min.            | <b>Typ.</b> <sup>[2]</sup> | Max. | Unit |
|---------------------------------|-----------------------------------------|-------------|-----------------------------------------------------------|-----------------|----------------------------|------|------|
| V <sub>DR</sub>                 | V <sub>CC</sub> for Data Retention      |             | $\frac{V_{CC} = 3.0V,}{CE \ge V_{CC} - 0.3V,}$            | 2.0             |                            |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current                  | L           | $CE \ge V_{CC} - 0.3V$ ,<br>$V_{IN} \ge V_{CC} - 0.3V$ or |                 | 2                          | 50   | μΑ   |
|                                 |                                         | LL          | V <sub>IN</sub> ≤ 0.3V                                    |                 | 0.1                        | 5    | μΑ   |
|                                 |                                         | LL Indust'l |                                                           |                 | 0.1                        | 10   | μΑ   |
| t <sub>CDR</sub> <sup>[3]</sup> | Chip Deselect to Data<br>Retention Time |             |                                                           | 0               |                            |      | ns   |
| t <sub>R</sub> <sup>[3]</sup>   | Operation Recovery Time                 | )           |                                                           | t <sub>RC</sub> |                            |      | ns   |

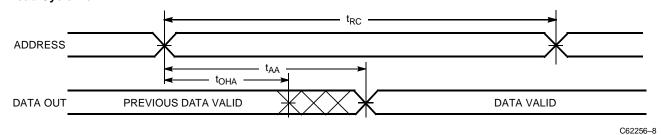
#### **Data Retention Waveform**



#### Note:

4. No input may exceed V<sub>CC</sub>+0.5V.




## Switching Characteristics Over the Operating Range<sup>[5]</sup>

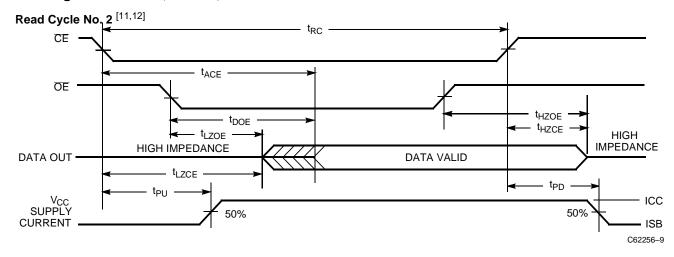
|                            |                                     | CY62         | 256–55 | CY62256-70 |      |      |
|----------------------------|-------------------------------------|--------------|--------|------------|------|------|
| Parameter                  | Description                         | Min.         | Max.   | Min.       | Max. | Unit |
| READ CYCLE                 | •                                   |              | •      |            | •    |      |
| t <sub>RC</sub>            | Read Cycle Time                     | 55           |        | 70         |      | ns   |
| t <sub>AA</sub>            | Address to Data Valid               |              | 55     |            | 70   | ns   |
| t <sub>OHA</sub>           | Data Hold from Address Change       | 5            |        | 5          |      | ns   |
| t <sub>ACE</sub>           | CE LOW to Data Valid                |              | 55     |            | 70   | ns   |
| t <sub>DOE</sub>           | OE LOW to Data Valid                |              | 25     |            | 35   | ns   |
| t <sub>LZOE</sub>          | OE LOW to Low Z <sup>[6]</sup>      | 5            |        | 5          |      | ns   |
| t <sub>HZOE</sub>          | OE HIGH to High Z <sup>[6, 7]</sup> |              | 20     |            | 25   | ns   |
| t <sub>LZCE</sub>          | CE LOW to Low Z <sup>[6]</sup>      | 5            |        | 5          |      | ns   |
| t <sub>HZCE</sub>          | CE HIGH to High Z <sup>[6, 7]</sup> |              | 20     |            | 25   | ns   |
| t <sub>PU</sub>            | CE LOW to Power-Up                  | 0            |        | 0          |      | ns   |
| t <sub>PD</sub>            | CE HIGH to Power-Down               |              | 55     |            | 70   | ns   |
| WRITE CYCLE <sup>[8,</sup> | 9]                                  | <del>!</del> |        | •          |      | •    |
| t <sub>WC</sub>            | Write Cycle Time                    | 55           |        | 70         |      | ns   |
| t <sub>SCE</sub>           | CE LOW to Write End                 | 45           |        | 60         |      | ns   |
| t <sub>AW</sub>            | Address Set-Up to Write End         | 45           |        | 60         |      | ns   |
| t <sub>HA</sub>            | Address Hold from Write End         | 0            |        | 0          |      | ns   |
| t <sub>SA</sub>            | Address Set-Up to Write Start       | 0            |        | 0          |      | ns   |
| t <sub>PWE</sub>           | WE Pulse Width                      | 40           |        | 50         |      | ns   |
| t <sub>SD</sub>            | Data Set-Up to Write End            | 25           |        | 30         |      | ns   |
| t <sub>HD</sub>            | Data Hold from Write End            | 0            |        | 0          |      | ns   |
| t <sub>HZWE</sub>          | WE LOW to High Z <sup>[6, 7]</sup>  |              | 20     |            | 25   | ns   |
| t <sub>LZWE</sub>          | WE HIGH to Low Z <sup>[6]</sup>     | 5            |        | 5          |      | ns   |

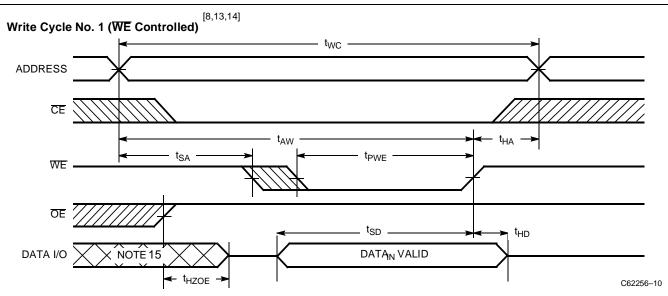
Shaded area contains preliminary information.

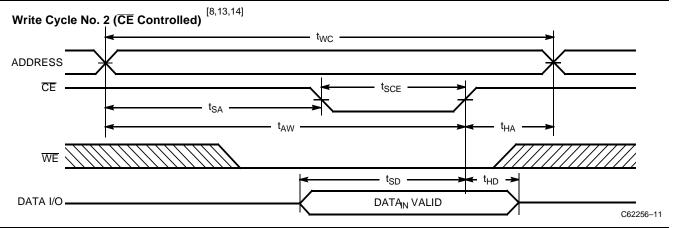
## **Switching Waveforms**

## Read Cycle No. 1<sup>[10,11]</sup>




Notes:


- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $I_{OL}/I_{OH}$  and 100-pF load capacitance. 5.


- 10\_I/I<sub>OH</sub> and 10U-Pr load capacitance.
   At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device.
   t<sub>HZOE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with C<sub>L</sub> = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
   The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
   The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>
   Device is continuously selected. OE, CE = V<sub>IL</sub>.
- 11. WE is HIGH for read cycle.

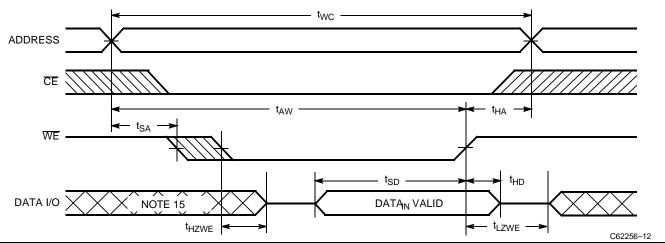


## Switching Waveforms (continued)







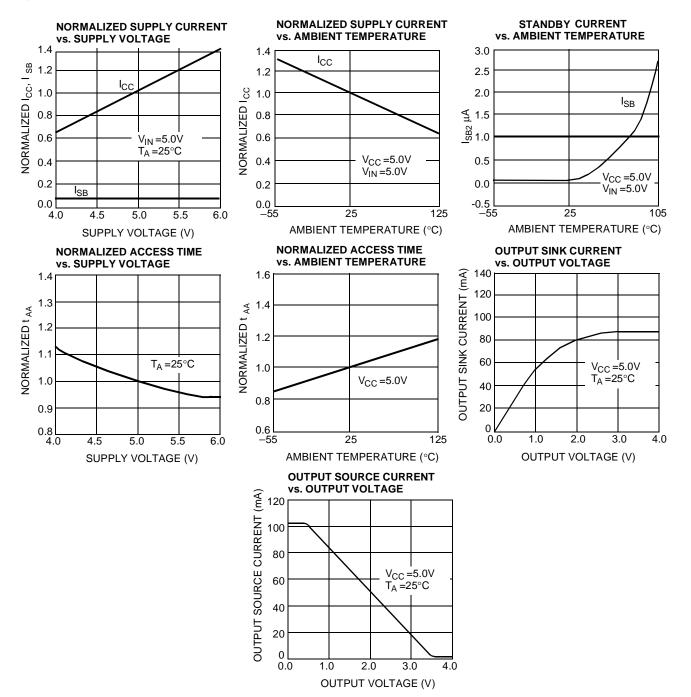

#### Notes:

- 12. Address valid prior to or coincident with CE transition LOW.
  13. Data I/O is high impedance if OE = V<sub>IH</sub>.
  14. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.



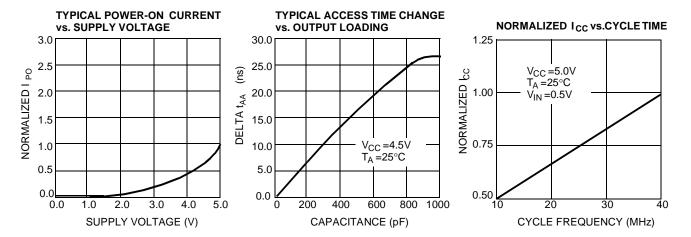
## Switching Waveforms (continued)

## Write Cycle No. 3 (WE Controlled, OE LOW) [9,14]




#### Note:

15. During this period, the I/Os are in output state and input signals should not be applied.




## **Typical DC and AC Characteristics**





## Typical DC and AC Characteristics (continued)



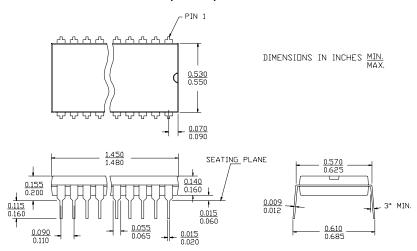
## **Truth Table**

| CE | WE | OE | Inputs/Outputs | Mode                      | Power                      |
|----|----|----|----------------|---------------------------|----------------------------|
| Н  | Х  | Х  | High Z         | Deselect/Power-Down       | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out       | Read                      | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In        | Write                     | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High Z         | Deselect, Output Disabled | Active (I <sub>CC</sub> )  |

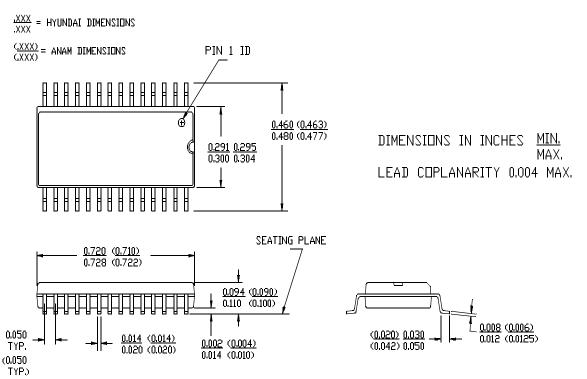


## **Ordering Information**

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                               | Operating<br>Range |
|---------------|-----------------|-----------------|--------------------------------------------|--------------------|
| 55            | CY62256-55SNC   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Commercial         |
|               | CY62256L-55SNC  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-55SNC | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-55ZRC   | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256L-55ZRC  | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256LL-55ZRC | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256-55ZC    | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256L-55ZC   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-55ZC  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-55PC    | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
| 70            | CY62256-70SNC   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Commercial         |
|               | CY62256L-70SNC  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-70SNC | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-70SNI   | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  | Industrial         |
|               | CY62256L-70SNI  | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256LL-70SNI | S22             | 28-Lead 450-Mil (300-Mil Body Width) SOIC  |                    |
|               | CY62256-70ZC    | Z28             | 28-Lead Thin Small Outline Package         | Commercial         |
|               | CY62256L-70ZC   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-70ZC  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-70ZI    | Z28             | 28-Lead Thin Small Outline Package         | Industrial         |
|               | CY62256L-70ZI   | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256LL-70ZI  | Z28             | 28-Lead Thin Small Outline Package         |                    |
|               | CY62256-70PC    | P15             | 28-Lead (600-Mil) Molded DIP               | Commercial         |
|               | CY62256L-70PC   | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
|               | CY62256LL-70PC  | P15             | 28-Lead (600-Mil) Molded DIP               |                    |
|               | CY62256-70ZRC   | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256L-70ZRC  | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |
|               | CY62256LL-70ZRC | ZR28            | 28-Lead Reverse Thin Small Outline Package |                    |


Shaded area contains preliminary information.

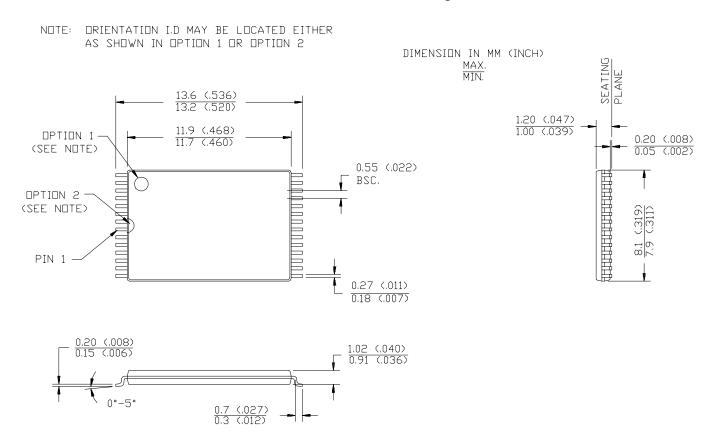
Document #: 38-00455-C




## **Package Diagrams**

## 28-Lead (600-Mil) Molded DIP P15

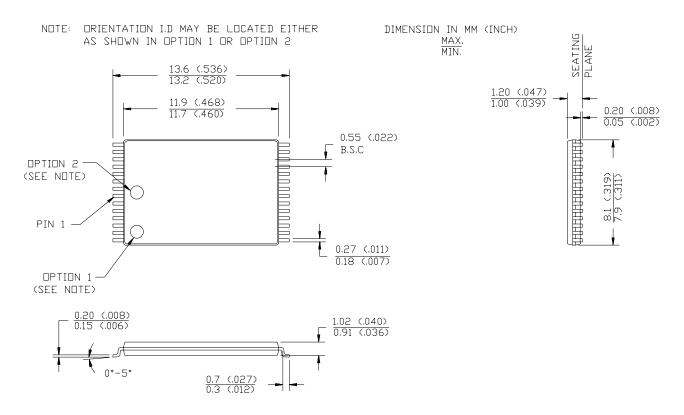



#### 28-Lead 450-Mil (300-Mil Body Width) SOIC S22





## Package Diagrams (continued)


#### 28-Lead Thin Small Outline Package Z28





## Package Diagrams (continued)

#### 28-Lead Reverse Thin Small Outline Package ZR28



<sup>©</sup> Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfurnion or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.